Class: Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails
- Inherits:
-
Object
- Object
- Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails
- Defined in:
- lib/google/cloud/dlp/v2/doc/google/privacy/dlp/v2/dlp.rb
Overview
Result of a risk analysis operation request.
Defined Under Namespace
Classes: CategoricalStatsResult, DeltaPresenceEstimationResult, KAnonymityResult, KMapEstimationResult, LDiversityResult, NumericalStatsResult
Instance Attribute Summary collapse
- #categorical_stats_result ⇒ Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::CategoricalStatsResult
- #delta_presence_estimation_result ⇒ Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::DeltaPresenceEstimationResult
- #k_anonymity_result ⇒ Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::KAnonymityResult
- #k_map_estimation_result ⇒ Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::KMapEstimationResult
- #l_diversity_result ⇒ Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::LDiversityResult
- #numerical_stats_result ⇒ Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::NumericalStatsResult
-
#requested_privacy_metric ⇒ Google::Privacy::Dlp::V2::PrivacyMetric
Privacy metric to compute.
-
#requested_source_table ⇒ Google::Privacy::Dlp::V2::BigQueryTable
Input dataset to compute metrics over.
Instance Attribute Details
#categorical_stats_result ⇒ Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::CategoricalStatsResult
828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 |
# File 'lib/google/cloud/dlp/v2/doc/google/privacy/dlp/v2/dlp.rb', line 828 class AnalyzeDataSourceRiskDetails # Result of the numerical stats computation. # @!attribute [rw] min_value # @return [Google::Privacy::Dlp::V2::Value] # Minimum value appearing in the column. # @!attribute [rw] max_value # @return [Google::Privacy::Dlp::V2::Value] # Maximum value appearing in the column. # @!attribute [rw] quantile_values # @return [Array<Google::Privacy::Dlp::V2::Value>] # List of 99 values that partition the set of field values into 100 equal # sized buckets. class NumericalStatsResult; end # Result of the categorical stats computation. # @!attribute [rw] value_frequency_histogram_buckets # @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::CategoricalStatsResult::CategoricalStatsHistogramBucket>] # Histogram of value frequencies in the column. class CategoricalStatsResult # @!attribute [rw] value_frequency_lower_bound # @return [Integer] # Lower bound on the value frequency of the values in this bucket. # @!attribute [rw] value_frequency_upper_bound # @return [Integer] # Upper bound on the value frequency of the values in this bucket. # @!attribute [rw] bucket_size # @return [Integer] # Total number of values in this bucket. # @!attribute [rw] bucket_values # @return [Array<Google::Privacy::Dlp::V2::ValueFrequency>] # Sample of value frequencies in this bucket. The total number of # values returned per bucket is capped at 20. # @!attribute [rw] bucket_value_count # @return [Integer] # Total number of distinct values in this bucket. class CategoricalStatsHistogramBucket; end end # Result of the k-anonymity computation. # @!attribute [rw] equivalence_class_histogram_buckets # @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::KAnonymityResult::KAnonymityHistogramBucket>] # Histogram of k-anonymity equivalence classes. class KAnonymityResult # The set of columns' values that share the same ldiversity value # @!attribute [rw] quasi_ids_values # @return [Array<Google::Privacy::Dlp::V2::Value>] # Set of values defining the equivalence class. One value per # quasi-identifier column in the original KAnonymity metric message. # The order is always the same as the original request. # @!attribute [rw] equivalence_class_size # @return [Integer] # Size of the equivalence class, for example number of rows with the # above set of values. class KAnonymityEquivalenceClass; end # @!attribute [rw] equivalence_class_size_lower_bound # @return [Integer] # Lower bound on the size of the equivalence classes in this bucket. # @!attribute [rw] equivalence_class_size_upper_bound # @return [Integer] # Upper bound on the size of the equivalence classes in this bucket. # @!attribute [rw] bucket_size # @return [Integer] # Total number of equivalence classes in this bucket. # @!attribute [rw] bucket_values # @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::KAnonymityResult::KAnonymityEquivalenceClass>] # Sample of equivalence classes in this bucket. The total number of # classes returned per bucket is capped at 20. # @!attribute [rw] bucket_value_count # @return [Integer] # Total number of distinct equivalence classes in this bucket. class KAnonymityHistogramBucket; end end # Result of the l-diversity computation. # @!attribute [rw] sensitive_value_frequency_histogram_buckets # @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::LDiversityResult::LDiversityHistogramBucket>] # Histogram of l-diversity equivalence class sensitive value frequencies. class LDiversityResult # The set of columns' values that share the same ldiversity value. # @!attribute [rw] quasi_ids_values # @return [Array<Google::Privacy::Dlp::V2::Value>] # Quasi-identifier values defining the k-anonymity equivalence # class. The order is always the same as the original request. # @!attribute [rw] equivalence_class_size # @return [Integer] # Size of the k-anonymity equivalence class. # @!attribute [rw] num_distinct_sensitive_values # @return [Integer] # Number of distinct sensitive values in this equivalence class. # @!attribute [rw] top_sensitive_values # @return [Array<Google::Privacy::Dlp::V2::ValueFrequency>] # Estimated frequencies of top sensitive values. class LDiversityEquivalenceClass; end # @!attribute [rw] sensitive_value_frequency_lower_bound # @return [Integer] # Lower bound on the sensitive value frequencies of the equivalence # classes in this bucket. # @!attribute [rw] sensitive_value_frequency_upper_bound # @return [Integer] # Upper bound on the sensitive value frequencies of the equivalence # classes in this bucket. # @!attribute [rw] bucket_size # @return [Integer] # Total number of equivalence classes in this bucket. # @!attribute [rw] bucket_values # @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::LDiversityResult::LDiversityEquivalenceClass>] # Sample of equivalence classes in this bucket. The total number of # classes returned per bucket is capped at 20. # @!attribute [rw] bucket_value_count # @return [Integer] # Total number of distinct equivalence classes in this bucket. class LDiversityHistogramBucket; end end # Result of the reidentifiability analysis. Note that these results are an # estimation, not exact values. # @!attribute [rw] k_map_estimation_histogram # @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::KMapEstimationResult::KMapEstimationHistogramBucket>] # The intervals [min_anonymity, max_anonymity] do not overlap. If a value # doesn't correspond to any such interval, the associated frequency is # zero. For example, the following records: # {min_anonymity: 1, max_anonymity: 1, frequency: 17} # {min_anonymity: 2, max_anonymity: 3, frequency: 42} # {min_anonymity: 5, max_anonymity: 10, frequency: 99} # mean that there are no record with an estimated anonymity of 4, 5, or # larger than 10. class KMapEstimationResult # A tuple of values for the quasi-identifier columns. # @!attribute [rw] quasi_ids_values # @return [Array<Google::Privacy::Dlp::V2::Value>] # The quasi-identifier values. # @!attribute [rw] estimated_anonymity # @return [Integer] # The estimated anonymity for these quasi-identifier values. class KMapEstimationQuasiIdValues; end # A KMapEstimationHistogramBucket message with the following values: # min_anonymity: 3 # max_anonymity: 5 # frequency: 42 # means that there are 42 records whose quasi-identifier values correspond # to 3, 4 or 5 people in the overlying population. An important particular # case is when min_anonymity = max_anonymity = 1: the frequency field then # corresponds to the number of uniquely identifiable records. # @!attribute [rw] min_anonymity # @return [Integer] # Always positive. # @!attribute [rw] max_anonymity # @return [Integer] # Always greater than or equal to min_anonymity. # @!attribute [rw] bucket_size # @return [Integer] # Number of records within these anonymity bounds. # @!attribute [rw] bucket_values # @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::KMapEstimationResult::KMapEstimationQuasiIdValues>] # Sample of quasi-identifier tuple values in this bucket. The total # number of classes returned per bucket is capped at 20. # @!attribute [rw] bucket_value_count # @return [Integer] # Total number of distinct quasi-identifier tuple values in this bucket. class KMapEstimationHistogramBucket; end end # Result of the δ-presence computation. Note that these results are an # estimation, not exact values. # @!attribute [rw] delta_presence_estimation_histogram # @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::DeltaPresenceEstimationResult::DeltaPresenceEstimationHistogramBucket>] # The intervals [min_probability, max_probability) do not overlap. If a # value doesn't correspond to any such interval, the associated frequency # is zero. For example, the following records: # {min_probability: 0, max_probability: 0.1, frequency: 17} # {min_probability: 0.2, max_probability: 0.3, frequency: 42} # {min_probability: 0.3, max_probability: 0.4, frequency: 99} # mean that there are no record with an estimated probability in [0.1, 0.2) # nor larger or equal to 0.4. class DeltaPresenceEstimationResult # A tuple of values for the quasi-identifier columns. # @!attribute [rw] quasi_ids_values # @return [Array<Google::Privacy::Dlp::V2::Value>] # The quasi-identifier values. # @!attribute [rw] estimated_probability # @return [Float] # The estimated probability that a given individual sharing these # quasi-identifier values is in the dataset. This value, typically called # δ, is the ratio between the number of records in the dataset with these # quasi-identifier values, and the total number of individuals (inside # *and* outside the dataset) with these quasi-identifier values. # For example, if there are 15 individuals in the dataset who share the # same quasi-identifier values, and an estimated 100 people in the entire # population with these values, then δ is 0.15. class DeltaPresenceEstimationQuasiIdValues; end # A DeltaPresenceEstimationHistogramBucket message with the following # values: # min_probability: 0.1 # max_probability: 0.2 # frequency: 42 # means that there are 42 records for which δ is in [0.1, 0.2). An # important particular case is when min_probability = max_probability = 1: # then, every individual who shares this quasi-identifier combination is in # the dataset. # @!attribute [rw] min_probability # @return [Float] # Between 0 and 1. # @!attribute [rw] max_probability # @return [Float] # Always greater than or equal to min_probability. # @!attribute [rw] bucket_size # @return [Integer] # Number of records within these probability bounds. # @!attribute [rw] bucket_values # @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::DeltaPresenceEstimationResult::DeltaPresenceEstimationQuasiIdValues>] # Sample of quasi-identifier tuple values in this bucket. The total # number of classes returned per bucket is capped at 20. # @!attribute [rw] bucket_value_count # @return [Integer] # Total number of distinct quasi-identifier tuple values in this bucket. class DeltaPresenceEstimationHistogramBucket; end end end |
#delta_presence_estimation_result ⇒ Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::DeltaPresenceEstimationResult
828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 |
# File 'lib/google/cloud/dlp/v2/doc/google/privacy/dlp/v2/dlp.rb', line 828 class AnalyzeDataSourceRiskDetails # Result of the numerical stats computation. # @!attribute [rw] min_value # @return [Google::Privacy::Dlp::V2::Value] # Minimum value appearing in the column. # @!attribute [rw] max_value # @return [Google::Privacy::Dlp::V2::Value] # Maximum value appearing in the column. # @!attribute [rw] quantile_values # @return [Array<Google::Privacy::Dlp::V2::Value>] # List of 99 values that partition the set of field values into 100 equal # sized buckets. class NumericalStatsResult; end # Result of the categorical stats computation. # @!attribute [rw] value_frequency_histogram_buckets # @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::CategoricalStatsResult::CategoricalStatsHistogramBucket>] # Histogram of value frequencies in the column. class CategoricalStatsResult # @!attribute [rw] value_frequency_lower_bound # @return [Integer] # Lower bound on the value frequency of the values in this bucket. # @!attribute [rw] value_frequency_upper_bound # @return [Integer] # Upper bound on the value frequency of the values in this bucket. # @!attribute [rw] bucket_size # @return [Integer] # Total number of values in this bucket. # @!attribute [rw] bucket_values # @return [Array<Google::Privacy::Dlp::V2::ValueFrequency>] # Sample of value frequencies in this bucket. The total number of # values returned per bucket is capped at 20. # @!attribute [rw] bucket_value_count # @return [Integer] # Total number of distinct values in this bucket. class CategoricalStatsHistogramBucket; end end # Result of the k-anonymity computation. # @!attribute [rw] equivalence_class_histogram_buckets # @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::KAnonymityResult::KAnonymityHistogramBucket>] # Histogram of k-anonymity equivalence classes. class KAnonymityResult # The set of columns' values that share the same ldiversity value # @!attribute [rw] quasi_ids_values # @return [Array<Google::Privacy::Dlp::V2::Value>] # Set of values defining the equivalence class. One value per # quasi-identifier column in the original KAnonymity metric message. # The order is always the same as the original request. # @!attribute [rw] equivalence_class_size # @return [Integer] # Size of the equivalence class, for example number of rows with the # above set of values. class KAnonymityEquivalenceClass; end # @!attribute [rw] equivalence_class_size_lower_bound # @return [Integer] # Lower bound on the size of the equivalence classes in this bucket. # @!attribute [rw] equivalence_class_size_upper_bound # @return [Integer] # Upper bound on the size of the equivalence classes in this bucket. # @!attribute [rw] bucket_size # @return [Integer] # Total number of equivalence classes in this bucket. # @!attribute [rw] bucket_values # @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::KAnonymityResult::KAnonymityEquivalenceClass>] # Sample of equivalence classes in this bucket. The total number of # classes returned per bucket is capped at 20. # @!attribute [rw] bucket_value_count # @return [Integer] # Total number of distinct equivalence classes in this bucket. class KAnonymityHistogramBucket; end end # Result of the l-diversity computation. # @!attribute [rw] sensitive_value_frequency_histogram_buckets # @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::LDiversityResult::LDiversityHistogramBucket>] # Histogram of l-diversity equivalence class sensitive value frequencies. class LDiversityResult # The set of columns' values that share the same ldiversity value. # @!attribute [rw] quasi_ids_values # @return [Array<Google::Privacy::Dlp::V2::Value>] # Quasi-identifier values defining the k-anonymity equivalence # class. The order is always the same as the original request. # @!attribute [rw] equivalence_class_size # @return [Integer] # Size of the k-anonymity equivalence class. # @!attribute [rw] num_distinct_sensitive_values # @return [Integer] # Number of distinct sensitive values in this equivalence class. # @!attribute [rw] top_sensitive_values # @return [Array<Google::Privacy::Dlp::V2::ValueFrequency>] # Estimated frequencies of top sensitive values. class LDiversityEquivalenceClass; end # @!attribute [rw] sensitive_value_frequency_lower_bound # @return [Integer] # Lower bound on the sensitive value frequencies of the equivalence # classes in this bucket. # @!attribute [rw] sensitive_value_frequency_upper_bound # @return [Integer] # Upper bound on the sensitive value frequencies of the equivalence # classes in this bucket. # @!attribute [rw] bucket_size # @return [Integer] # Total number of equivalence classes in this bucket. # @!attribute [rw] bucket_values # @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::LDiversityResult::LDiversityEquivalenceClass>] # Sample of equivalence classes in this bucket. The total number of # classes returned per bucket is capped at 20. # @!attribute [rw] bucket_value_count # @return [Integer] # Total number of distinct equivalence classes in this bucket. class LDiversityHistogramBucket; end end # Result of the reidentifiability analysis. Note that these results are an # estimation, not exact values. # @!attribute [rw] k_map_estimation_histogram # @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::KMapEstimationResult::KMapEstimationHistogramBucket>] # The intervals [min_anonymity, max_anonymity] do not overlap. If a value # doesn't correspond to any such interval, the associated frequency is # zero. For example, the following records: # {min_anonymity: 1, max_anonymity: 1, frequency: 17} # {min_anonymity: 2, max_anonymity: 3, frequency: 42} # {min_anonymity: 5, max_anonymity: 10, frequency: 99} # mean that there are no record with an estimated anonymity of 4, 5, or # larger than 10. class KMapEstimationResult # A tuple of values for the quasi-identifier columns. # @!attribute [rw] quasi_ids_values # @return [Array<Google::Privacy::Dlp::V2::Value>] # The quasi-identifier values. # @!attribute [rw] estimated_anonymity # @return [Integer] # The estimated anonymity for these quasi-identifier values. class KMapEstimationQuasiIdValues; end # A KMapEstimationHistogramBucket message with the following values: # min_anonymity: 3 # max_anonymity: 5 # frequency: 42 # means that there are 42 records whose quasi-identifier values correspond # to 3, 4 or 5 people in the overlying population. An important particular # case is when min_anonymity = max_anonymity = 1: the frequency field then # corresponds to the number of uniquely identifiable records. # @!attribute [rw] min_anonymity # @return [Integer] # Always positive. # @!attribute [rw] max_anonymity # @return [Integer] # Always greater than or equal to min_anonymity. # @!attribute [rw] bucket_size # @return [Integer] # Number of records within these anonymity bounds. # @!attribute [rw] bucket_values # @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::KMapEstimationResult::KMapEstimationQuasiIdValues>] # Sample of quasi-identifier tuple values in this bucket. The total # number of classes returned per bucket is capped at 20. # @!attribute [rw] bucket_value_count # @return [Integer] # Total number of distinct quasi-identifier tuple values in this bucket. class KMapEstimationHistogramBucket; end end # Result of the δ-presence computation. Note that these results are an # estimation, not exact values. # @!attribute [rw] delta_presence_estimation_histogram # @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::DeltaPresenceEstimationResult::DeltaPresenceEstimationHistogramBucket>] # The intervals [min_probability, max_probability) do not overlap. If a # value doesn't correspond to any such interval, the associated frequency # is zero. For example, the following records: # {min_probability: 0, max_probability: 0.1, frequency: 17} # {min_probability: 0.2, max_probability: 0.3, frequency: 42} # {min_probability: 0.3, max_probability: 0.4, frequency: 99} # mean that there are no record with an estimated probability in [0.1, 0.2) # nor larger or equal to 0.4. class DeltaPresenceEstimationResult # A tuple of values for the quasi-identifier columns. # @!attribute [rw] quasi_ids_values # @return [Array<Google::Privacy::Dlp::V2::Value>] # The quasi-identifier values. # @!attribute [rw] estimated_probability # @return [Float] # The estimated probability that a given individual sharing these # quasi-identifier values is in the dataset. This value, typically called # δ, is the ratio between the number of records in the dataset with these # quasi-identifier values, and the total number of individuals (inside # *and* outside the dataset) with these quasi-identifier values. # For example, if there are 15 individuals in the dataset who share the # same quasi-identifier values, and an estimated 100 people in the entire # population with these values, then δ is 0.15. class DeltaPresenceEstimationQuasiIdValues; end # A DeltaPresenceEstimationHistogramBucket message with the following # values: # min_probability: 0.1 # max_probability: 0.2 # frequency: 42 # means that there are 42 records for which δ is in [0.1, 0.2). An # important particular case is when min_probability = max_probability = 1: # then, every individual who shares this quasi-identifier combination is in # the dataset. # @!attribute [rw] min_probability # @return [Float] # Between 0 and 1. # @!attribute [rw] max_probability # @return [Float] # Always greater than or equal to min_probability. # @!attribute [rw] bucket_size # @return [Integer] # Number of records within these probability bounds. # @!attribute [rw] bucket_values # @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::DeltaPresenceEstimationResult::DeltaPresenceEstimationQuasiIdValues>] # Sample of quasi-identifier tuple values in this bucket. The total # number of classes returned per bucket is capped at 20. # @!attribute [rw] bucket_value_count # @return [Integer] # Total number of distinct quasi-identifier tuple values in this bucket. class DeltaPresenceEstimationHistogramBucket; end end end |
#k_anonymity_result ⇒ Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::KAnonymityResult
828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 |
# File 'lib/google/cloud/dlp/v2/doc/google/privacy/dlp/v2/dlp.rb', line 828 class AnalyzeDataSourceRiskDetails # Result of the numerical stats computation. # @!attribute [rw] min_value # @return [Google::Privacy::Dlp::V2::Value] # Minimum value appearing in the column. # @!attribute [rw] max_value # @return [Google::Privacy::Dlp::V2::Value] # Maximum value appearing in the column. # @!attribute [rw] quantile_values # @return [Array<Google::Privacy::Dlp::V2::Value>] # List of 99 values that partition the set of field values into 100 equal # sized buckets. class NumericalStatsResult; end # Result of the categorical stats computation. # @!attribute [rw] value_frequency_histogram_buckets # @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::CategoricalStatsResult::CategoricalStatsHistogramBucket>] # Histogram of value frequencies in the column. class CategoricalStatsResult # @!attribute [rw] value_frequency_lower_bound # @return [Integer] # Lower bound on the value frequency of the values in this bucket. # @!attribute [rw] value_frequency_upper_bound # @return [Integer] # Upper bound on the value frequency of the values in this bucket. # @!attribute [rw] bucket_size # @return [Integer] # Total number of values in this bucket. # @!attribute [rw] bucket_values # @return [Array<Google::Privacy::Dlp::V2::ValueFrequency>] # Sample of value frequencies in this bucket. The total number of # values returned per bucket is capped at 20. # @!attribute [rw] bucket_value_count # @return [Integer] # Total number of distinct values in this bucket. class CategoricalStatsHistogramBucket; end end # Result of the k-anonymity computation. # @!attribute [rw] equivalence_class_histogram_buckets # @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::KAnonymityResult::KAnonymityHistogramBucket>] # Histogram of k-anonymity equivalence classes. class KAnonymityResult # The set of columns' values that share the same ldiversity value # @!attribute [rw] quasi_ids_values # @return [Array<Google::Privacy::Dlp::V2::Value>] # Set of values defining the equivalence class. One value per # quasi-identifier column in the original KAnonymity metric message. # The order is always the same as the original request. # @!attribute [rw] equivalence_class_size # @return [Integer] # Size of the equivalence class, for example number of rows with the # above set of values. class KAnonymityEquivalenceClass; end # @!attribute [rw] equivalence_class_size_lower_bound # @return [Integer] # Lower bound on the size of the equivalence classes in this bucket. # @!attribute [rw] equivalence_class_size_upper_bound # @return [Integer] # Upper bound on the size of the equivalence classes in this bucket. # @!attribute [rw] bucket_size # @return [Integer] # Total number of equivalence classes in this bucket. # @!attribute [rw] bucket_values # @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::KAnonymityResult::KAnonymityEquivalenceClass>] # Sample of equivalence classes in this bucket. The total number of # classes returned per bucket is capped at 20. # @!attribute [rw] bucket_value_count # @return [Integer] # Total number of distinct equivalence classes in this bucket. class KAnonymityHistogramBucket; end end # Result of the l-diversity computation. # @!attribute [rw] sensitive_value_frequency_histogram_buckets # @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::LDiversityResult::LDiversityHistogramBucket>] # Histogram of l-diversity equivalence class sensitive value frequencies. class LDiversityResult # The set of columns' values that share the same ldiversity value. # @!attribute [rw] quasi_ids_values # @return [Array<Google::Privacy::Dlp::V2::Value>] # Quasi-identifier values defining the k-anonymity equivalence # class. The order is always the same as the original request. # @!attribute [rw] equivalence_class_size # @return [Integer] # Size of the k-anonymity equivalence class. # @!attribute [rw] num_distinct_sensitive_values # @return [Integer] # Number of distinct sensitive values in this equivalence class. # @!attribute [rw] top_sensitive_values # @return [Array<Google::Privacy::Dlp::V2::ValueFrequency>] # Estimated frequencies of top sensitive values. class LDiversityEquivalenceClass; end # @!attribute [rw] sensitive_value_frequency_lower_bound # @return [Integer] # Lower bound on the sensitive value frequencies of the equivalence # classes in this bucket. # @!attribute [rw] sensitive_value_frequency_upper_bound # @return [Integer] # Upper bound on the sensitive value frequencies of the equivalence # classes in this bucket. # @!attribute [rw] bucket_size # @return [Integer] # Total number of equivalence classes in this bucket. # @!attribute [rw] bucket_values # @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::LDiversityResult::LDiversityEquivalenceClass>] # Sample of equivalence classes in this bucket. The total number of # classes returned per bucket is capped at 20. # @!attribute [rw] bucket_value_count # @return [Integer] # Total number of distinct equivalence classes in this bucket. class LDiversityHistogramBucket; end end # Result of the reidentifiability analysis. Note that these results are an # estimation, not exact values. # @!attribute [rw] k_map_estimation_histogram # @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::KMapEstimationResult::KMapEstimationHistogramBucket>] # The intervals [min_anonymity, max_anonymity] do not overlap. If a value # doesn't correspond to any such interval, the associated frequency is # zero. For example, the following records: # {min_anonymity: 1, max_anonymity: 1, frequency: 17} # {min_anonymity: 2, max_anonymity: 3, frequency: 42} # {min_anonymity: 5, max_anonymity: 10, frequency: 99} # mean that there are no record with an estimated anonymity of 4, 5, or # larger than 10. class KMapEstimationResult # A tuple of values for the quasi-identifier columns. # @!attribute [rw] quasi_ids_values # @return [Array<Google::Privacy::Dlp::V2::Value>] # The quasi-identifier values. # @!attribute [rw] estimated_anonymity # @return [Integer] # The estimated anonymity for these quasi-identifier values. class KMapEstimationQuasiIdValues; end # A KMapEstimationHistogramBucket message with the following values: # min_anonymity: 3 # max_anonymity: 5 # frequency: 42 # means that there are 42 records whose quasi-identifier values correspond # to 3, 4 or 5 people in the overlying population. An important particular # case is when min_anonymity = max_anonymity = 1: the frequency field then # corresponds to the number of uniquely identifiable records. # @!attribute [rw] min_anonymity # @return [Integer] # Always positive. # @!attribute [rw] max_anonymity # @return [Integer] # Always greater than or equal to min_anonymity. # @!attribute [rw] bucket_size # @return [Integer] # Number of records within these anonymity bounds. # @!attribute [rw] bucket_values # @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::KMapEstimationResult::KMapEstimationQuasiIdValues>] # Sample of quasi-identifier tuple values in this bucket. The total # number of classes returned per bucket is capped at 20. # @!attribute [rw] bucket_value_count # @return [Integer] # Total number of distinct quasi-identifier tuple values in this bucket. class KMapEstimationHistogramBucket; end end # Result of the δ-presence computation. Note that these results are an # estimation, not exact values. # @!attribute [rw] delta_presence_estimation_histogram # @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::DeltaPresenceEstimationResult::DeltaPresenceEstimationHistogramBucket>] # The intervals [min_probability, max_probability) do not overlap. If a # value doesn't correspond to any such interval, the associated frequency # is zero. For example, the following records: # {min_probability: 0, max_probability: 0.1, frequency: 17} # {min_probability: 0.2, max_probability: 0.3, frequency: 42} # {min_probability: 0.3, max_probability: 0.4, frequency: 99} # mean that there are no record with an estimated probability in [0.1, 0.2) # nor larger or equal to 0.4. class DeltaPresenceEstimationResult # A tuple of values for the quasi-identifier columns. # @!attribute [rw] quasi_ids_values # @return [Array<Google::Privacy::Dlp::V2::Value>] # The quasi-identifier values. # @!attribute [rw] estimated_probability # @return [Float] # The estimated probability that a given individual sharing these # quasi-identifier values is in the dataset. This value, typically called # δ, is the ratio between the number of records in the dataset with these # quasi-identifier values, and the total number of individuals (inside # *and* outside the dataset) with these quasi-identifier values. # For example, if there are 15 individuals in the dataset who share the # same quasi-identifier values, and an estimated 100 people in the entire # population with these values, then δ is 0.15. class DeltaPresenceEstimationQuasiIdValues; end # A DeltaPresenceEstimationHistogramBucket message with the following # values: # min_probability: 0.1 # max_probability: 0.2 # frequency: 42 # means that there are 42 records for which δ is in [0.1, 0.2). An # important particular case is when min_probability = max_probability = 1: # then, every individual who shares this quasi-identifier combination is in # the dataset. # @!attribute [rw] min_probability # @return [Float] # Between 0 and 1. # @!attribute [rw] max_probability # @return [Float] # Always greater than or equal to min_probability. # @!attribute [rw] bucket_size # @return [Integer] # Number of records within these probability bounds. # @!attribute [rw] bucket_values # @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::DeltaPresenceEstimationResult::DeltaPresenceEstimationQuasiIdValues>] # Sample of quasi-identifier tuple values in this bucket. The total # number of classes returned per bucket is capped at 20. # @!attribute [rw] bucket_value_count # @return [Integer] # Total number of distinct quasi-identifier tuple values in this bucket. class DeltaPresenceEstimationHistogramBucket; end end end |
#k_map_estimation_result ⇒ Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::KMapEstimationResult
828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 |
# File 'lib/google/cloud/dlp/v2/doc/google/privacy/dlp/v2/dlp.rb', line 828 class AnalyzeDataSourceRiskDetails # Result of the numerical stats computation. # @!attribute [rw] min_value # @return [Google::Privacy::Dlp::V2::Value] # Minimum value appearing in the column. # @!attribute [rw] max_value # @return [Google::Privacy::Dlp::V2::Value] # Maximum value appearing in the column. # @!attribute [rw] quantile_values # @return [Array<Google::Privacy::Dlp::V2::Value>] # List of 99 values that partition the set of field values into 100 equal # sized buckets. class NumericalStatsResult; end # Result of the categorical stats computation. # @!attribute [rw] value_frequency_histogram_buckets # @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::CategoricalStatsResult::CategoricalStatsHistogramBucket>] # Histogram of value frequencies in the column. class CategoricalStatsResult # @!attribute [rw] value_frequency_lower_bound # @return [Integer] # Lower bound on the value frequency of the values in this bucket. # @!attribute [rw] value_frequency_upper_bound # @return [Integer] # Upper bound on the value frequency of the values in this bucket. # @!attribute [rw] bucket_size # @return [Integer] # Total number of values in this bucket. # @!attribute [rw] bucket_values # @return [Array<Google::Privacy::Dlp::V2::ValueFrequency>] # Sample of value frequencies in this bucket. The total number of # values returned per bucket is capped at 20. # @!attribute [rw] bucket_value_count # @return [Integer] # Total number of distinct values in this bucket. class CategoricalStatsHistogramBucket; end end # Result of the k-anonymity computation. # @!attribute [rw] equivalence_class_histogram_buckets # @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::KAnonymityResult::KAnonymityHistogramBucket>] # Histogram of k-anonymity equivalence classes. class KAnonymityResult # The set of columns' values that share the same ldiversity value # @!attribute [rw] quasi_ids_values # @return [Array<Google::Privacy::Dlp::V2::Value>] # Set of values defining the equivalence class. One value per # quasi-identifier column in the original KAnonymity metric message. # The order is always the same as the original request. # @!attribute [rw] equivalence_class_size # @return [Integer] # Size of the equivalence class, for example number of rows with the # above set of values. class KAnonymityEquivalenceClass; end # @!attribute [rw] equivalence_class_size_lower_bound # @return [Integer] # Lower bound on the size of the equivalence classes in this bucket. # @!attribute [rw] equivalence_class_size_upper_bound # @return [Integer] # Upper bound on the size of the equivalence classes in this bucket. # @!attribute [rw] bucket_size # @return [Integer] # Total number of equivalence classes in this bucket. # @!attribute [rw] bucket_values # @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::KAnonymityResult::KAnonymityEquivalenceClass>] # Sample of equivalence classes in this bucket. The total number of # classes returned per bucket is capped at 20. # @!attribute [rw] bucket_value_count # @return [Integer] # Total number of distinct equivalence classes in this bucket. class KAnonymityHistogramBucket; end end # Result of the l-diversity computation. # @!attribute [rw] sensitive_value_frequency_histogram_buckets # @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::LDiversityResult::LDiversityHistogramBucket>] # Histogram of l-diversity equivalence class sensitive value frequencies. class LDiversityResult # The set of columns' values that share the same ldiversity value. # @!attribute [rw] quasi_ids_values # @return [Array<Google::Privacy::Dlp::V2::Value>] # Quasi-identifier values defining the k-anonymity equivalence # class. The order is always the same as the original request. # @!attribute [rw] equivalence_class_size # @return [Integer] # Size of the k-anonymity equivalence class. # @!attribute [rw] num_distinct_sensitive_values # @return [Integer] # Number of distinct sensitive values in this equivalence class. # @!attribute [rw] top_sensitive_values # @return [Array<Google::Privacy::Dlp::V2::ValueFrequency>] # Estimated frequencies of top sensitive values. class LDiversityEquivalenceClass; end # @!attribute [rw] sensitive_value_frequency_lower_bound # @return [Integer] # Lower bound on the sensitive value frequencies of the equivalence # classes in this bucket. # @!attribute [rw] sensitive_value_frequency_upper_bound # @return [Integer] # Upper bound on the sensitive value frequencies of the equivalence # classes in this bucket. # @!attribute [rw] bucket_size # @return [Integer] # Total number of equivalence classes in this bucket. # @!attribute [rw] bucket_values # @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::LDiversityResult::LDiversityEquivalenceClass>] # Sample of equivalence classes in this bucket. The total number of # classes returned per bucket is capped at 20. # @!attribute [rw] bucket_value_count # @return [Integer] # Total number of distinct equivalence classes in this bucket. class LDiversityHistogramBucket; end end # Result of the reidentifiability analysis. Note that these results are an # estimation, not exact values. # @!attribute [rw] k_map_estimation_histogram # @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::KMapEstimationResult::KMapEstimationHistogramBucket>] # The intervals [min_anonymity, max_anonymity] do not overlap. If a value # doesn't correspond to any such interval, the associated frequency is # zero. For example, the following records: # {min_anonymity: 1, max_anonymity: 1, frequency: 17} # {min_anonymity: 2, max_anonymity: 3, frequency: 42} # {min_anonymity: 5, max_anonymity: 10, frequency: 99} # mean that there are no record with an estimated anonymity of 4, 5, or # larger than 10. class KMapEstimationResult # A tuple of values for the quasi-identifier columns. # @!attribute [rw] quasi_ids_values # @return [Array<Google::Privacy::Dlp::V2::Value>] # The quasi-identifier values. # @!attribute [rw] estimated_anonymity # @return [Integer] # The estimated anonymity for these quasi-identifier values. class KMapEstimationQuasiIdValues; end # A KMapEstimationHistogramBucket message with the following values: # min_anonymity: 3 # max_anonymity: 5 # frequency: 42 # means that there are 42 records whose quasi-identifier values correspond # to 3, 4 or 5 people in the overlying population. An important particular # case is when min_anonymity = max_anonymity = 1: the frequency field then # corresponds to the number of uniquely identifiable records. # @!attribute [rw] min_anonymity # @return [Integer] # Always positive. # @!attribute [rw] max_anonymity # @return [Integer] # Always greater than or equal to min_anonymity. # @!attribute [rw] bucket_size # @return [Integer] # Number of records within these anonymity bounds. # @!attribute [rw] bucket_values # @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::KMapEstimationResult::KMapEstimationQuasiIdValues>] # Sample of quasi-identifier tuple values in this bucket. The total # number of classes returned per bucket is capped at 20. # @!attribute [rw] bucket_value_count # @return [Integer] # Total number of distinct quasi-identifier tuple values in this bucket. class KMapEstimationHistogramBucket; end end # Result of the δ-presence computation. Note that these results are an # estimation, not exact values. # @!attribute [rw] delta_presence_estimation_histogram # @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::DeltaPresenceEstimationResult::DeltaPresenceEstimationHistogramBucket>] # The intervals [min_probability, max_probability) do not overlap. If a # value doesn't correspond to any such interval, the associated frequency # is zero. For example, the following records: # {min_probability: 0, max_probability: 0.1, frequency: 17} # {min_probability: 0.2, max_probability: 0.3, frequency: 42} # {min_probability: 0.3, max_probability: 0.4, frequency: 99} # mean that there are no record with an estimated probability in [0.1, 0.2) # nor larger or equal to 0.4. class DeltaPresenceEstimationResult # A tuple of values for the quasi-identifier columns. # @!attribute [rw] quasi_ids_values # @return [Array<Google::Privacy::Dlp::V2::Value>] # The quasi-identifier values. # @!attribute [rw] estimated_probability # @return [Float] # The estimated probability that a given individual sharing these # quasi-identifier values is in the dataset. This value, typically called # δ, is the ratio between the number of records in the dataset with these # quasi-identifier values, and the total number of individuals (inside # *and* outside the dataset) with these quasi-identifier values. # For example, if there are 15 individuals in the dataset who share the # same quasi-identifier values, and an estimated 100 people in the entire # population with these values, then δ is 0.15. class DeltaPresenceEstimationQuasiIdValues; end # A DeltaPresenceEstimationHistogramBucket message with the following # values: # min_probability: 0.1 # max_probability: 0.2 # frequency: 42 # means that there are 42 records for which δ is in [0.1, 0.2). An # important particular case is when min_probability = max_probability = 1: # then, every individual who shares this quasi-identifier combination is in # the dataset. # @!attribute [rw] min_probability # @return [Float] # Between 0 and 1. # @!attribute [rw] max_probability # @return [Float] # Always greater than or equal to min_probability. # @!attribute [rw] bucket_size # @return [Integer] # Number of records within these probability bounds. # @!attribute [rw] bucket_values # @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::DeltaPresenceEstimationResult::DeltaPresenceEstimationQuasiIdValues>] # Sample of quasi-identifier tuple values in this bucket. The total # number of classes returned per bucket is capped at 20. # @!attribute [rw] bucket_value_count # @return [Integer] # Total number of distinct quasi-identifier tuple values in this bucket. class DeltaPresenceEstimationHistogramBucket; end end end |
#l_diversity_result ⇒ Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::LDiversityResult
828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 |
# File 'lib/google/cloud/dlp/v2/doc/google/privacy/dlp/v2/dlp.rb', line 828 class AnalyzeDataSourceRiskDetails # Result of the numerical stats computation. # @!attribute [rw] min_value # @return [Google::Privacy::Dlp::V2::Value] # Minimum value appearing in the column. # @!attribute [rw] max_value # @return [Google::Privacy::Dlp::V2::Value] # Maximum value appearing in the column. # @!attribute [rw] quantile_values # @return [Array<Google::Privacy::Dlp::V2::Value>] # List of 99 values that partition the set of field values into 100 equal # sized buckets. class NumericalStatsResult; end # Result of the categorical stats computation. # @!attribute [rw] value_frequency_histogram_buckets # @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::CategoricalStatsResult::CategoricalStatsHistogramBucket>] # Histogram of value frequencies in the column. class CategoricalStatsResult # @!attribute [rw] value_frequency_lower_bound # @return [Integer] # Lower bound on the value frequency of the values in this bucket. # @!attribute [rw] value_frequency_upper_bound # @return [Integer] # Upper bound on the value frequency of the values in this bucket. # @!attribute [rw] bucket_size # @return [Integer] # Total number of values in this bucket. # @!attribute [rw] bucket_values # @return [Array<Google::Privacy::Dlp::V2::ValueFrequency>] # Sample of value frequencies in this bucket. The total number of # values returned per bucket is capped at 20. # @!attribute [rw] bucket_value_count # @return [Integer] # Total number of distinct values in this bucket. class CategoricalStatsHistogramBucket; end end # Result of the k-anonymity computation. # @!attribute [rw] equivalence_class_histogram_buckets # @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::KAnonymityResult::KAnonymityHistogramBucket>] # Histogram of k-anonymity equivalence classes. class KAnonymityResult # The set of columns' values that share the same ldiversity value # @!attribute [rw] quasi_ids_values # @return [Array<Google::Privacy::Dlp::V2::Value>] # Set of values defining the equivalence class. One value per # quasi-identifier column in the original KAnonymity metric message. # The order is always the same as the original request. # @!attribute [rw] equivalence_class_size # @return [Integer] # Size of the equivalence class, for example number of rows with the # above set of values. class KAnonymityEquivalenceClass; end # @!attribute [rw] equivalence_class_size_lower_bound # @return [Integer] # Lower bound on the size of the equivalence classes in this bucket. # @!attribute [rw] equivalence_class_size_upper_bound # @return [Integer] # Upper bound on the size of the equivalence classes in this bucket. # @!attribute [rw] bucket_size # @return [Integer] # Total number of equivalence classes in this bucket. # @!attribute [rw] bucket_values # @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::KAnonymityResult::KAnonymityEquivalenceClass>] # Sample of equivalence classes in this bucket. The total number of # classes returned per bucket is capped at 20. # @!attribute [rw] bucket_value_count # @return [Integer] # Total number of distinct equivalence classes in this bucket. class KAnonymityHistogramBucket; end end # Result of the l-diversity computation. # @!attribute [rw] sensitive_value_frequency_histogram_buckets # @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::LDiversityResult::LDiversityHistogramBucket>] # Histogram of l-diversity equivalence class sensitive value frequencies. class LDiversityResult # The set of columns' values that share the same ldiversity value. # @!attribute [rw] quasi_ids_values # @return [Array<Google::Privacy::Dlp::V2::Value>] # Quasi-identifier values defining the k-anonymity equivalence # class. The order is always the same as the original request. # @!attribute [rw] equivalence_class_size # @return [Integer] # Size of the k-anonymity equivalence class. # @!attribute [rw] num_distinct_sensitive_values # @return [Integer] # Number of distinct sensitive values in this equivalence class. # @!attribute [rw] top_sensitive_values # @return [Array<Google::Privacy::Dlp::V2::ValueFrequency>] # Estimated frequencies of top sensitive values. class LDiversityEquivalenceClass; end # @!attribute [rw] sensitive_value_frequency_lower_bound # @return [Integer] # Lower bound on the sensitive value frequencies of the equivalence # classes in this bucket. # @!attribute [rw] sensitive_value_frequency_upper_bound # @return [Integer] # Upper bound on the sensitive value frequencies of the equivalence # classes in this bucket. # @!attribute [rw] bucket_size # @return [Integer] # Total number of equivalence classes in this bucket. # @!attribute [rw] bucket_values # @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::LDiversityResult::LDiversityEquivalenceClass>] # Sample of equivalence classes in this bucket. The total number of # classes returned per bucket is capped at 20. # @!attribute [rw] bucket_value_count # @return [Integer] # Total number of distinct equivalence classes in this bucket. class LDiversityHistogramBucket; end end # Result of the reidentifiability analysis. Note that these results are an # estimation, not exact values. # @!attribute [rw] k_map_estimation_histogram # @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::KMapEstimationResult::KMapEstimationHistogramBucket>] # The intervals [min_anonymity, max_anonymity] do not overlap. If a value # doesn't correspond to any such interval, the associated frequency is # zero. For example, the following records: # {min_anonymity: 1, max_anonymity: 1, frequency: 17} # {min_anonymity: 2, max_anonymity: 3, frequency: 42} # {min_anonymity: 5, max_anonymity: 10, frequency: 99} # mean that there are no record with an estimated anonymity of 4, 5, or # larger than 10. class KMapEstimationResult # A tuple of values for the quasi-identifier columns. # @!attribute [rw] quasi_ids_values # @return [Array<Google::Privacy::Dlp::V2::Value>] # The quasi-identifier values. # @!attribute [rw] estimated_anonymity # @return [Integer] # The estimated anonymity for these quasi-identifier values. class KMapEstimationQuasiIdValues; end # A KMapEstimationHistogramBucket message with the following values: # min_anonymity: 3 # max_anonymity: 5 # frequency: 42 # means that there are 42 records whose quasi-identifier values correspond # to 3, 4 or 5 people in the overlying population. An important particular # case is when min_anonymity = max_anonymity = 1: the frequency field then # corresponds to the number of uniquely identifiable records. # @!attribute [rw] min_anonymity # @return [Integer] # Always positive. # @!attribute [rw] max_anonymity # @return [Integer] # Always greater than or equal to min_anonymity. # @!attribute [rw] bucket_size # @return [Integer] # Number of records within these anonymity bounds. # @!attribute [rw] bucket_values # @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::KMapEstimationResult::KMapEstimationQuasiIdValues>] # Sample of quasi-identifier tuple values in this bucket. The total # number of classes returned per bucket is capped at 20. # @!attribute [rw] bucket_value_count # @return [Integer] # Total number of distinct quasi-identifier tuple values in this bucket. class KMapEstimationHistogramBucket; end end # Result of the δ-presence computation. Note that these results are an # estimation, not exact values. # @!attribute [rw] delta_presence_estimation_histogram # @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::DeltaPresenceEstimationResult::DeltaPresenceEstimationHistogramBucket>] # The intervals [min_probability, max_probability) do not overlap. If a # value doesn't correspond to any such interval, the associated frequency # is zero. For example, the following records: # {min_probability: 0, max_probability: 0.1, frequency: 17} # {min_probability: 0.2, max_probability: 0.3, frequency: 42} # {min_probability: 0.3, max_probability: 0.4, frequency: 99} # mean that there are no record with an estimated probability in [0.1, 0.2) # nor larger or equal to 0.4. class DeltaPresenceEstimationResult # A tuple of values for the quasi-identifier columns. # @!attribute [rw] quasi_ids_values # @return [Array<Google::Privacy::Dlp::V2::Value>] # The quasi-identifier values. # @!attribute [rw] estimated_probability # @return [Float] # The estimated probability that a given individual sharing these # quasi-identifier values is in the dataset. This value, typically called # δ, is the ratio between the number of records in the dataset with these # quasi-identifier values, and the total number of individuals (inside # *and* outside the dataset) with these quasi-identifier values. # For example, if there are 15 individuals in the dataset who share the # same quasi-identifier values, and an estimated 100 people in the entire # population with these values, then δ is 0.15. class DeltaPresenceEstimationQuasiIdValues; end # A DeltaPresenceEstimationHistogramBucket message with the following # values: # min_probability: 0.1 # max_probability: 0.2 # frequency: 42 # means that there are 42 records for which δ is in [0.1, 0.2). An # important particular case is when min_probability = max_probability = 1: # then, every individual who shares this quasi-identifier combination is in # the dataset. # @!attribute [rw] min_probability # @return [Float] # Between 0 and 1. # @!attribute [rw] max_probability # @return [Float] # Always greater than or equal to min_probability. # @!attribute [rw] bucket_size # @return [Integer] # Number of records within these probability bounds. # @!attribute [rw] bucket_values # @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::DeltaPresenceEstimationResult::DeltaPresenceEstimationQuasiIdValues>] # Sample of quasi-identifier tuple values in this bucket. The total # number of classes returned per bucket is capped at 20. # @!attribute [rw] bucket_value_count # @return [Integer] # Total number of distinct quasi-identifier tuple values in this bucket. class DeltaPresenceEstimationHistogramBucket; end end end |
#numerical_stats_result ⇒ Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::NumericalStatsResult
828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 |
# File 'lib/google/cloud/dlp/v2/doc/google/privacy/dlp/v2/dlp.rb', line 828 class AnalyzeDataSourceRiskDetails # Result of the numerical stats computation. # @!attribute [rw] min_value # @return [Google::Privacy::Dlp::V2::Value] # Minimum value appearing in the column. # @!attribute [rw] max_value # @return [Google::Privacy::Dlp::V2::Value] # Maximum value appearing in the column. # @!attribute [rw] quantile_values # @return [Array<Google::Privacy::Dlp::V2::Value>] # List of 99 values that partition the set of field values into 100 equal # sized buckets. class NumericalStatsResult; end # Result of the categorical stats computation. # @!attribute [rw] value_frequency_histogram_buckets # @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::CategoricalStatsResult::CategoricalStatsHistogramBucket>] # Histogram of value frequencies in the column. class CategoricalStatsResult # @!attribute [rw] value_frequency_lower_bound # @return [Integer] # Lower bound on the value frequency of the values in this bucket. # @!attribute [rw] value_frequency_upper_bound # @return [Integer] # Upper bound on the value frequency of the values in this bucket. # @!attribute [rw] bucket_size # @return [Integer] # Total number of values in this bucket. # @!attribute [rw] bucket_values # @return [Array<Google::Privacy::Dlp::V2::ValueFrequency>] # Sample of value frequencies in this bucket. The total number of # values returned per bucket is capped at 20. # @!attribute [rw] bucket_value_count # @return [Integer] # Total number of distinct values in this bucket. class CategoricalStatsHistogramBucket; end end # Result of the k-anonymity computation. # @!attribute [rw] equivalence_class_histogram_buckets # @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::KAnonymityResult::KAnonymityHistogramBucket>] # Histogram of k-anonymity equivalence classes. class KAnonymityResult # The set of columns' values that share the same ldiversity value # @!attribute [rw] quasi_ids_values # @return [Array<Google::Privacy::Dlp::V2::Value>] # Set of values defining the equivalence class. One value per # quasi-identifier column in the original KAnonymity metric message. # The order is always the same as the original request. # @!attribute [rw] equivalence_class_size # @return [Integer] # Size of the equivalence class, for example number of rows with the # above set of values. class KAnonymityEquivalenceClass; end # @!attribute [rw] equivalence_class_size_lower_bound # @return [Integer] # Lower bound on the size of the equivalence classes in this bucket. # @!attribute [rw] equivalence_class_size_upper_bound # @return [Integer] # Upper bound on the size of the equivalence classes in this bucket. # @!attribute [rw] bucket_size # @return [Integer] # Total number of equivalence classes in this bucket. # @!attribute [rw] bucket_values # @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::KAnonymityResult::KAnonymityEquivalenceClass>] # Sample of equivalence classes in this bucket. The total number of # classes returned per bucket is capped at 20. # @!attribute [rw] bucket_value_count # @return [Integer] # Total number of distinct equivalence classes in this bucket. class KAnonymityHistogramBucket; end end # Result of the l-diversity computation. # @!attribute [rw] sensitive_value_frequency_histogram_buckets # @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::LDiversityResult::LDiversityHistogramBucket>] # Histogram of l-diversity equivalence class sensitive value frequencies. class LDiversityResult # The set of columns' values that share the same ldiversity value. # @!attribute [rw] quasi_ids_values # @return [Array<Google::Privacy::Dlp::V2::Value>] # Quasi-identifier values defining the k-anonymity equivalence # class. The order is always the same as the original request. # @!attribute [rw] equivalence_class_size # @return [Integer] # Size of the k-anonymity equivalence class. # @!attribute [rw] num_distinct_sensitive_values # @return [Integer] # Number of distinct sensitive values in this equivalence class. # @!attribute [rw] top_sensitive_values # @return [Array<Google::Privacy::Dlp::V2::ValueFrequency>] # Estimated frequencies of top sensitive values. class LDiversityEquivalenceClass; end # @!attribute [rw] sensitive_value_frequency_lower_bound # @return [Integer] # Lower bound on the sensitive value frequencies of the equivalence # classes in this bucket. # @!attribute [rw] sensitive_value_frequency_upper_bound # @return [Integer] # Upper bound on the sensitive value frequencies of the equivalence # classes in this bucket. # @!attribute [rw] bucket_size # @return [Integer] # Total number of equivalence classes in this bucket. # @!attribute [rw] bucket_values # @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::LDiversityResult::LDiversityEquivalenceClass>] # Sample of equivalence classes in this bucket. The total number of # classes returned per bucket is capped at 20. # @!attribute [rw] bucket_value_count # @return [Integer] # Total number of distinct equivalence classes in this bucket. class LDiversityHistogramBucket; end end # Result of the reidentifiability analysis. Note that these results are an # estimation, not exact values. # @!attribute [rw] k_map_estimation_histogram # @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::KMapEstimationResult::KMapEstimationHistogramBucket>] # The intervals [min_anonymity, max_anonymity] do not overlap. If a value # doesn't correspond to any such interval, the associated frequency is # zero. For example, the following records: # {min_anonymity: 1, max_anonymity: 1, frequency: 17} # {min_anonymity: 2, max_anonymity: 3, frequency: 42} # {min_anonymity: 5, max_anonymity: 10, frequency: 99} # mean that there are no record with an estimated anonymity of 4, 5, or # larger than 10. class KMapEstimationResult # A tuple of values for the quasi-identifier columns. # @!attribute [rw] quasi_ids_values # @return [Array<Google::Privacy::Dlp::V2::Value>] # The quasi-identifier values. # @!attribute [rw] estimated_anonymity # @return [Integer] # The estimated anonymity for these quasi-identifier values. class KMapEstimationQuasiIdValues; end # A KMapEstimationHistogramBucket message with the following values: # min_anonymity: 3 # max_anonymity: 5 # frequency: 42 # means that there are 42 records whose quasi-identifier values correspond # to 3, 4 or 5 people in the overlying population. An important particular # case is when min_anonymity = max_anonymity = 1: the frequency field then # corresponds to the number of uniquely identifiable records. # @!attribute [rw] min_anonymity # @return [Integer] # Always positive. # @!attribute [rw] max_anonymity # @return [Integer] # Always greater than or equal to min_anonymity. # @!attribute [rw] bucket_size # @return [Integer] # Number of records within these anonymity bounds. # @!attribute [rw] bucket_values # @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::KMapEstimationResult::KMapEstimationQuasiIdValues>] # Sample of quasi-identifier tuple values in this bucket. The total # number of classes returned per bucket is capped at 20. # @!attribute [rw] bucket_value_count # @return [Integer] # Total number of distinct quasi-identifier tuple values in this bucket. class KMapEstimationHistogramBucket; end end # Result of the δ-presence computation. Note that these results are an # estimation, not exact values. # @!attribute [rw] delta_presence_estimation_histogram # @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::DeltaPresenceEstimationResult::DeltaPresenceEstimationHistogramBucket>] # The intervals [min_probability, max_probability) do not overlap. If a # value doesn't correspond to any such interval, the associated frequency # is zero. For example, the following records: # {min_probability: 0, max_probability: 0.1, frequency: 17} # {min_probability: 0.2, max_probability: 0.3, frequency: 42} # {min_probability: 0.3, max_probability: 0.4, frequency: 99} # mean that there are no record with an estimated probability in [0.1, 0.2) # nor larger or equal to 0.4. class DeltaPresenceEstimationResult # A tuple of values for the quasi-identifier columns. # @!attribute [rw] quasi_ids_values # @return [Array<Google::Privacy::Dlp::V2::Value>] # The quasi-identifier values. # @!attribute [rw] estimated_probability # @return [Float] # The estimated probability that a given individual sharing these # quasi-identifier values is in the dataset. This value, typically called # δ, is the ratio between the number of records in the dataset with these # quasi-identifier values, and the total number of individuals (inside # *and* outside the dataset) with these quasi-identifier values. # For example, if there are 15 individuals in the dataset who share the # same quasi-identifier values, and an estimated 100 people in the entire # population with these values, then δ is 0.15. class DeltaPresenceEstimationQuasiIdValues; end # A DeltaPresenceEstimationHistogramBucket message with the following # values: # min_probability: 0.1 # max_probability: 0.2 # frequency: 42 # means that there are 42 records for which δ is in [0.1, 0.2). An # important particular case is when min_probability = max_probability = 1: # then, every individual who shares this quasi-identifier combination is in # the dataset. # @!attribute [rw] min_probability # @return [Float] # Between 0 and 1. # @!attribute [rw] max_probability # @return [Float] # Always greater than or equal to min_probability. # @!attribute [rw] bucket_size # @return [Integer] # Number of records within these probability bounds. # @!attribute [rw] bucket_values # @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::DeltaPresenceEstimationResult::DeltaPresenceEstimationQuasiIdValues>] # Sample of quasi-identifier tuple values in this bucket. The total # number of classes returned per bucket is capped at 20. # @!attribute [rw] bucket_value_count # @return [Integer] # Total number of distinct quasi-identifier tuple values in this bucket. class DeltaPresenceEstimationHistogramBucket; end end end |
#requested_privacy_metric ⇒ Google::Privacy::Dlp::V2::PrivacyMetric
Returns Privacy metric to compute.
828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 |
# File 'lib/google/cloud/dlp/v2/doc/google/privacy/dlp/v2/dlp.rb', line 828 class AnalyzeDataSourceRiskDetails # Result of the numerical stats computation. # @!attribute [rw] min_value # @return [Google::Privacy::Dlp::V2::Value] # Minimum value appearing in the column. # @!attribute [rw] max_value # @return [Google::Privacy::Dlp::V2::Value] # Maximum value appearing in the column. # @!attribute [rw] quantile_values # @return [Array<Google::Privacy::Dlp::V2::Value>] # List of 99 values that partition the set of field values into 100 equal # sized buckets. class NumericalStatsResult; end # Result of the categorical stats computation. # @!attribute [rw] value_frequency_histogram_buckets # @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::CategoricalStatsResult::CategoricalStatsHistogramBucket>] # Histogram of value frequencies in the column. class CategoricalStatsResult # @!attribute [rw] value_frequency_lower_bound # @return [Integer] # Lower bound on the value frequency of the values in this bucket. # @!attribute [rw] value_frequency_upper_bound # @return [Integer] # Upper bound on the value frequency of the values in this bucket. # @!attribute [rw] bucket_size # @return [Integer] # Total number of values in this bucket. # @!attribute [rw] bucket_values # @return [Array<Google::Privacy::Dlp::V2::ValueFrequency>] # Sample of value frequencies in this bucket. The total number of # values returned per bucket is capped at 20. # @!attribute [rw] bucket_value_count # @return [Integer] # Total number of distinct values in this bucket. class CategoricalStatsHistogramBucket; end end # Result of the k-anonymity computation. # @!attribute [rw] equivalence_class_histogram_buckets # @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::KAnonymityResult::KAnonymityHistogramBucket>] # Histogram of k-anonymity equivalence classes. class KAnonymityResult # The set of columns' values that share the same ldiversity value # @!attribute [rw] quasi_ids_values # @return [Array<Google::Privacy::Dlp::V2::Value>] # Set of values defining the equivalence class. One value per # quasi-identifier column in the original KAnonymity metric message. # The order is always the same as the original request. # @!attribute [rw] equivalence_class_size # @return [Integer] # Size of the equivalence class, for example number of rows with the # above set of values. class KAnonymityEquivalenceClass; end # @!attribute [rw] equivalence_class_size_lower_bound # @return [Integer] # Lower bound on the size of the equivalence classes in this bucket. # @!attribute [rw] equivalence_class_size_upper_bound # @return [Integer] # Upper bound on the size of the equivalence classes in this bucket. # @!attribute [rw] bucket_size # @return [Integer] # Total number of equivalence classes in this bucket. # @!attribute [rw] bucket_values # @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::KAnonymityResult::KAnonymityEquivalenceClass>] # Sample of equivalence classes in this bucket. The total number of # classes returned per bucket is capped at 20. # @!attribute [rw] bucket_value_count # @return [Integer] # Total number of distinct equivalence classes in this bucket. class KAnonymityHistogramBucket; end end # Result of the l-diversity computation. # @!attribute [rw] sensitive_value_frequency_histogram_buckets # @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::LDiversityResult::LDiversityHistogramBucket>] # Histogram of l-diversity equivalence class sensitive value frequencies. class LDiversityResult # The set of columns' values that share the same ldiversity value. # @!attribute [rw] quasi_ids_values # @return [Array<Google::Privacy::Dlp::V2::Value>] # Quasi-identifier values defining the k-anonymity equivalence # class. The order is always the same as the original request. # @!attribute [rw] equivalence_class_size # @return [Integer] # Size of the k-anonymity equivalence class. # @!attribute [rw] num_distinct_sensitive_values # @return [Integer] # Number of distinct sensitive values in this equivalence class. # @!attribute [rw] top_sensitive_values # @return [Array<Google::Privacy::Dlp::V2::ValueFrequency>] # Estimated frequencies of top sensitive values. class LDiversityEquivalenceClass; end # @!attribute [rw] sensitive_value_frequency_lower_bound # @return [Integer] # Lower bound on the sensitive value frequencies of the equivalence # classes in this bucket. # @!attribute [rw] sensitive_value_frequency_upper_bound # @return [Integer] # Upper bound on the sensitive value frequencies of the equivalence # classes in this bucket. # @!attribute [rw] bucket_size # @return [Integer] # Total number of equivalence classes in this bucket. # @!attribute [rw] bucket_values # @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::LDiversityResult::LDiversityEquivalenceClass>] # Sample of equivalence classes in this bucket. The total number of # classes returned per bucket is capped at 20. # @!attribute [rw] bucket_value_count # @return [Integer] # Total number of distinct equivalence classes in this bucket. class LDiversityHistogramBucket; end end # Result of the reidentifiability analysis. Note that these results are an # estimation, not exact values. # @!attribute [rw] k_map_estimation_histogram # @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::KMapEstimationResult::KMapEstimationHistogramBucket>] # The intervals [min_anonymity, max_anonymity] do not overlap. If a value # doesn't correspond to any such interval, the associated frequency is # zero. For example, the following records: # {min_anonymity: 1, max_anonymity: 1, frequency: 17} # {min_anonymity: 2, max_anonymity: 3, frequency: 42} # {min_anonymity: 5, max_anonymity: 10, frequency: 99} # mean that there are no record with an estimated anonymity of 4, 5, or # larger than 10. class KMapEstimationResult # A tuple of values for the quasi-identifier columns. # @!attribute [rw] quasi_ids_values # @return [Array<Google::Privacy::Dlp::V2::Value>] # The quasi-identifier values. # @!attribute [rw] estimated_anonymity # @return [Integer] # The estimated anonymity for these quasi-identifier values. class KMapEstimationQuasiIdValues; end # A KMapEstimationHistogramBucket message with the following values: # min_anonymity: 3 # max_anonymity: 5 # frequency: 42 # means that there are 42 records whose quasi-identifier values correspond # to 3, 4 or 5 people in the overlying population. An important particular # case is when min_anonymity = max_anonymity = 1: the frequency field then # corresponds to the number of uniquely identifiable records. # @!attribute [rw] min_anonymity # @return [Integer] # Always positive. # @!attribute [rw] max_anonymity # @return [Integer] # Always greater than or equal to min_anonymity. # @!attribute [rw] bucket_size # @return [Integer] # Number of records within these anonymity bounds. # @!attribute [rw] bucket_values # @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::KMapEstimationResult::KMapEstimationQuasiIdValues>] # Sample of quasi-identifier tuple values in this bucket. The total # number of classes returned per bucket is capped at 20. # @!attribute [rw] bucket_value_count # @return [Integer] # Total number of distinct quasi-identifier tuple values in this bucket. class KMapEstimationHistogramBucket; end end # Result of the δ-presence computation. Note that these results are an # estimation, not exact values. # @!attribute [rw] delta_presence_estimation_histogram # @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::DeltaPresenceEstimationResult::DeltaPresenceEstimationHistogramBucket>] # The intervals [min_probability, max_probability) do not overlap. If a # value doesn't correspond to any such interval, the associated frequency # is zero. For example, the following records: # {min_probability: 0, max_probability: 0.1, frequency: 17} # {min_probability: 0.2, max_probability: 0.3, frequency: 42} # {min_probability: 0.3, max_probability: 0.4, frequency: 99} # mean that there are no record with an estimated probability in [0.1, 0.2) # nor larger or equal to 0.4. class DeltaPresenceEstimationResult # A tuple of values for the quasi-identifier columns. # @!attribute [rw] quasi_ids_values # @return [Array<Google::Privacy::Dlp::V2::Value>] # The quasi-identifier values. # @!attribute [rw] estimated_probability # @return [Float] # The estimated probability that a given individual sharing these # quasi-identifier values is in the dataset. This value, typically called # δ, is the ratio between the number of records in the dataset with these # quasi-identifier values, and the total number of individuals (inside # *and* outside the dataset) with these quasi-identifier values. # For example, if there are 15 individuals in the dataset who share the # same quasi-identifier values, and an estimated 100 people in the entire # population with these values, then δ is 0.15. class DeltaPresenceEstimationQuasiIdValues; end # A DeltaPresenceEstimationHistogramBucket message with the following # values: # min_probability: 0.1 # max_probability: 0.2 # frequency: 42 # means that there are 42 records for which δ is in [0.1, 0.2). An # important particular case is when min_probability = max_probability = 1: # then, every individual who shares this quasi-identifier combination is in # the dataset. # @!attribute [rw] min_probability # @return [Float] # Between 0 and 1. # @!attribute [rw] max_probability # @return [Float] # Always greater than or equal to min_probability. # @!attribute [rw] bucket_size # @return [Integer] # Number of records within these probability bounds. # @!attribute [rw] bucket_values # @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::DeltaPresenceEstimationResult::DeltaPresenceEstimationQuasiIdValues>] # Sample of quasi-identifier tuple values in this bucket. The total # number of classes returned per bucket is capped at 20. # @!attribute [rw] bucket_value_count # @return [Integer] # Total number of distinct quasi-identifier tuple values in this bucket. class DeltaPresenceEstimationHistogramBucket; end end end |
#requested_source_table ⇒ Google::Privacy::Dlp::V2::BigQueryTable
Returns Input dataset to compute metrics over.
828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 |
# File 'lib/google/cloud/dlp/v2/doc/google/privacy/dlp/v2/dlp.rb', line 828 class AnalyzeDataSourceRiskDetails # Result of the numerical stats computation. # @!attribute [rw] min_value # @return [Google::Privacy::Dlp::V2::Value] # Minimum value appearing in the column. # @!attribute [rw] max_value # @return [Google::Privacy::Dlp::V2::Value] # Maximum value appearing in the column. # @!attribute [rw] quantile_values # @return [Array<Google::Privacy::Dlp::V2::Value>] # List of 99 values that partition the set of field values into 100 equal # sized buckets. class NumericalStatsResult; end # Result of the categorical stats computation. # @!attribute [rw] value_frequency_histogram_buckets # @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::CategoricalStatsResult::CategoricalStatsHistogramBucket>] # Histogram of value frequencies in the column. class CategoricalStatsResult # @!attribute [rw] value_frequency_lower_bound # @return [Integer] # Lower bound on the value frequency of the values in this bucket. # @!attribute [rw] value_frequency_upper_bound # @return [Integer] # Upper bound on the value frequency of the values in this bucket. # @!attribute [rw] bucket_size # @return [Integer] # Total number of values in this bucket. # @!attribute [rw] bucket_values # @return [Array<Google::Privacy::Dlp::V2::ValueFrequency>] # Sample of value frequencies in this bucket. The total number of # values returned per bucket is capped at 20. # @!attribute [rw] bucket_value_count # @return [Integer] # Total number of distinct values in this bucket. class CategoricalStatsHistogramBucket; end end # Result of the k-anonymity computation. # @!attribute [rw] equivalence_class_histogram_buckets # @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::KAnonymityResult::KAnonymityHistogramBucket>] # Histogram of k-anonymity equivalence classes. class KAnonymityResult # The set of columns' values that share the same ldiversity value # @!attribute [rw] quasi_ids_values # @return [Array<Google::Privacy::Dlp::V2::Value>] # Set of values defining the equivalence class. One value per # quasi-identifier column in the original KAnonymity metric message. # The order is always the same as the original request. # @!attribute [rw] equivalence_class_size # @return [Integer] # Size of the equivalence class, for example number of rows with the # above set of values. class KAnonymityEquivalenceClass; end # @!attribute [rw] equivalence_class_size_lower_bound # @return [Integer] # Lower bound on the size of the equivalence classes in this bucket. # @!attribute [rw] equivalence_class_size_upper_bound # @return [Integer] # Upper bound on the size of the equivalence classes in this bucket. # @!attribute [rw] bucket_size # @return [Integer] # Total number of equivalence classes in this bucket. # @!attribute [rw] bucket_values # @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::KAnonymityResult::KAnonymityEquivalenceClass>] # Sample of equivalence classes in this bucket. The total number of # classes returned per bucket is capped at 20. # @!attribute [rw] bucket_value_count # @return [Integer] # Total number of distinct equivalence classes in this bucket. class KAnonymityHistogramBucket; end end # Result of the l-diversity computation. # @!attribute [rw] sensitive_value_frequency_histogram_buckets # @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::LDiversityResult::LDiversityHistogramBucket>] # Histogram of l-diversity equivalence class sensitive value frequencies. class LDiversityResult # The set of columns' values that share the same ldiversity value. # @!attribute [rw] quasi_ids_values # @return [Array<Google::Privacy::Dlp::V2::Value>] # Quasi-identifier values defining the k-anonymity equivalence # class. The order is always the same as the original request. # @!attribute [rw] equivalence_class_size # @return [Integer] # Size of the k-anonymity equivalence class. # @!attribute [rw] num_distinct_sensitive_values # @return [Integer] # Number of distinct sensitive values in this equivalence class. # @!attribute [rw] top_sensitive_values # @return [Array<Google::Privacy::Dlp::V2::ValueFrequency>] # Estimated frequencies of top sensitive values. class LDiversityEquivalenceClass; end # @!attribute [rw] sensitive_value_frequency_lower_bound # @return [Integer] # Lower bound on the sensitive value frequencies of the equivalence # classes in this bucket. # @!attribute [rw] sensitive_value_frequency_upper_bound # @return [Integer] # Upper bound on the sensitive value frequencies of the equivalence # classes in this bucket. # @!attribute [rw] bucket_size # @return [Integer] # Total number of equivalence classes in this bucket. # @!attribute [rw] bucket_values # @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::LDiversityResult::LDiversityEquivalenceClass>] # Sample of equivalence classes in this bucket. The total number of # classes returned per bucket is capped at 20. # @!attribute [rw] bucket_value_count # @return [Integer] # Total number of distinct equivalence classes in this bucket. class LDiversityHistogramBucket; end end # Result of the reidentifiability analysis. Note that these results are an # estimation, not exact values. # @!attribute [rw] k_map_estimation_histogram # @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::KMapEstimationResult::KMapEstimationHistogramBucket>] # The intervals [min_anonymity, max_anonymity] do not overlap. If a value # doesn't correspond to any such interval, the associated frequency is # zero. For example, the following records: # {min_anonymity: 1, max_anonymity: 1, frequency: 17} # {min_anonymity: 2, max_anonymity: 3, frequency: 42} # {min_anonymity: 5, max_anonymity: 10, frequency: 99} # mean that there are no record with an estimated anonymity of 4, 5, or # larger than 10. class KMapEstimationResult # A tuple of values for the quasi-identifier columns. # @!attribute [rw] quasi_ids_values # @return [Array<Google::Privacy::Dlp::V2::Value>] # The quasi-identifier values. # @!attribute [rw] estimated_anonymity # @return [Integer] # The estimated anonymity for these quasi-identifier values. class KMapEstimationQuasiIdValues; end # A KMapEstimationHistogramBucket message with the following values: # min_anonymity: 3 # max_anonymity: 5 # frequency: 42 # means that there are 42 records whose quasi-identifier values correspond # to 3, 4 or 5 people in the overlying population. An important particular # case is when min_anonymity = max_anonymity = 1: the frequency field then # corresponds to the number of uniquely identifiable records. # @!attribute [rw] min_anonymity # @return [Integer] # Always positive. # @!attribute [rw] max_anonymity # @return [Integer] # Always greater than or equal to min_anonymity. # @!attribute [rw] bucket_size # @return [Integer] # Number of records within these anonymity bounds. # @!attribute [rw] bucket_values # @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::KMapEstimationResult::KMapEstimationQuasiIdValues>] # Sample of quasi-identifier tuple values in this bucket. The total # number of classes returned per bucket is capped at 20. # @!attribute [rw] bucket_value_count # @return [Integer] # Total number of distinct quasi-identifier tuple values in this bucket. class KMapEstimationHistogramBucket; end end # Result of the δ-presence computation. Note that these results are an # estimation, not exact values. # @!attribute [rw] delta_presence_estimation_histogram # @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::DeltaPresenceEstimationResult::DeltaPresenceEstimationHistogramBucket>] # The intervals [min_probability, max_probability) do not overlap. If a # value doesn't correspond to any such interval, the associated frequency # is zero. For example, the following records: # {min_probability: 0, max_probability: 0.1, frequency: 17} # {min_probability: 0.2, max_probability: 0.3, frequency: 42} # {min_probability: 0.3, max_probability: 0.4, frequency: 99} # mean that there are no record with an estimated probability in [0.1, 0.2) # nor larger or equal to 0.4. class DeltaPresenceEstimationResult # A tuple of values for the quasi-identifier columns. # @!attribute [rw] quasi_ids_values # @return [Array<Google::Privacy::Dlp::V2::Value>] # The quasi-identifier values. # @!attribute [rw] estimated_probability # @return [Float] # The estimated probability that a given individual sharing these # quasi-identifier values is in the dataset. This value, typically called # δ, is the ratio between the number of records in the dataset with these # quasi-identifier values, and the total number of individuals (inside # *and* outside the dataset) with these quasi-identifier values. # For example, if there are 15 individuals in the dataset who share the # same quasi-identifier values, and an estimated 100 people in the entire # population with these values, then δ is 0.15. class DeltaPresenceEstimationQuasiIdValues; end # A DeltaPresenceEstimationHistogramBucket message with the following # values: # min_probability: 0.1 # max_probability: 0.2 # frequency: 42 # means that there are 42 records for which δ is in [0.1, 0.2). An # important particular case is when min_probability = max_probability = 1: # then, every individual who shares this quasi-identifier combination is in # the dataset. # @!attribute [rw] min_probability # @return [Float] # Between 0 and 1. # @!attribute [rw] max_probability # @return [Float] # Always greater than or equal to min_probability. # @!attribute [rw] bucket_size # @return [Integer] # Number of records within these probability bounds. # @!attribute [rw] bucket_values # @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::DeltaPresenceEstimationResult::DeltaPresenceEstimationQuasiIdValues>] # Sample of quasi-identifier tuple values in this bucket. The total # number of classes returned per bucket is capped at 20. # @!attribute [rw] bucket_value_count # @return [Integer] # Total number of distinct quasi-identifier tuple values in this bucket. class DeltaPresenceEstimationHistogramBucket; end end end |