Class: Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails

Inherits:
Object
  • Object
show all
Defined in:
lib/google/cloud/dlp/v2/doc/google/privacy/dlp/v2/dlp.rb

Overview

Result of a risk analysis operation request.

Defined Under Namespace

Classes: CategoricalStatsResult, DeltaPresenceEstimationResult, KAnonymityResult, KMapEstimationResult, LDiversityResult, NumericalStatsResult

Instance Attribute Summary collapse

Instance Attribute Details

#categorical_stats_resultGoogle::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::CategoricalStatsResult



828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
# File 'lib/google/cloud/dlp/v2/doc/google/privacy/dlp/v2/dlp.rb', line 828

class AnalyzeDataSourceRiskDetails
  # Result of the numerical stats computation.
  # @!attribute [rw] min_value
  #   @return [Google::Privacy::Dlp::V2::Value]
  #     Minimum value appearing in the column.
  # @!attribute [rw] max_value
  #   @return [Google::Privacy::Dlp::V2::Value]
  #     Maximum value appearing in the column.
  # @!attribute [rw] quantile_values
  #   @return [Array<Google::Privacy::Dlp::V2::Value>]
  #     List of 99 values that partition the set of field values into 100 equal
  #     sized buckets.
  class NumericalStatsResult; end

  # Result of the categorical stats computation.
  # @!attribute [rw] value_frequency_histogram_buckets
  #   @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::CategoricalStatsResult::CategoricalStatsHistogramBucket>]
  #     Histogram of value frequencies in the column.
  class CategoricalStatsResult
    # @!attribute [rw] value_frequency_lower_bound
    #   @return [Integer]
    #     Lower bound on the value frequency of the values in this bucket.
    # @!attribute [rw] value_frequency_upper_bound
    #   @return [Integer]
    #     Upper bound on the value frequency of the values in this bucket.
    # @!attribute [rw] bucket_size
    #   @return [Integer]
    #     Total number of values in this bucket.
    # @!attribute [rw] bucket_values
    #   @return [Array<Google::Privacy::Dlp::V2::ValueFrequency>]
    #     Sample of value frequencies in this bucket. The total number of
    #     values returned per bucket is capped at 20.
    # @!attribute [rw] bucket_value_count
    #   @return [Integer]
    #     Total number of distinct values in this bucket.
    class CategoricalStatsHistogramBucket; end
  end

  # Result of the k-anonymity computation.
  # @!attribute [rw] equivalence_class_histogram_buckets
  #   @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::KAnonymityResult::KAnonymityHistogramBucket>]
  #     Histogram of k-anonymity equivalence classes.
  class KAnonymityResult
    # The set of columns' values that share the same ldiversity value
    # @!attribute [rw] quasi_ids_values
    #   @return [Array<Google::Privacy::Dlp::V2::Value>]
    #     Set of values defining the equivalence class. One value per
    #     quasi-identifier column in the original KAnonymity metric message.
    #     The order is always the same as the original request.
    # @!attribute [rw] equivalence_class_size
    #   @return [Integer]
    #     Size of the equivalence class, for example number of rows with the
    #     above set of values.
    class KAnonymityEquivalenceClass; end

    # @!attribute [rw] equivalence_class_size_lower_bound
    #   @return [Integer]
    #     Lower bound on the size of the equivalence classes in this bucket.
    # @!attribute [rw] equivalence_class_size_upper_bound
    #   @return [Integer]
    #     Upper bound on the size of the equivalence classes in this bucket.
    # @!attribute [rw] bucket_size
    #   @return [Integer]
    #     Total number of equivalence classes in this bucket.
    # @!attribute [rw] bucket_values
    #   @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::KAnonymityResult::KAnonymityEquivalenceClass>]
    #     Sample of equivalence classes in this bucket. The total number of
    #     classes returned per bucket is capped at 20.
    # @!attribute [rw] bucket_value_count
    #   @return [Integer]
    #     Total number of distinct equivalence classes in this bucket.
    class KAnonymityHistogramBucket; end
  end

  # Result of the l-diversity computation.
  # @!attribute [rw] sensitive_value_frequency_histogram_buckets
  #   @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::LDiversityResult::LDiversityHistogramBucket>]
  #     Histogram of l-diversity equivalence class sensitive value frequencies.
  class LDiversityResult
    # The set of columns' values that share the same ldiversity value.
    # @!attribute [rw] quasi_ids_values
    #   @return [Array<Google::Privacy::Dlp::V2::Value>]
    #     Quasi-identifier values defining the k-anonymity equivalence
    #     class. The order is always the same as the original request.
    # @!attribute [rw] equivalence_class_size
    #   @return [Integer]
    #     Size of the k-anonymity equivalence class.
    # @!attribute [rw] num_distinct_sensitive_values
    #   @return [Integer]
    #     Number of distinct sensitive values in this equivalence class.
    # @!attribute [rw] top_sensitive_values
    #   @return [Array<Google::Privacy::Dlp::V2::ValueFrequency>]
    #     Estimated frequencies of top sensitive values.
    class LDiversityEquivalenceClass; end

    # @!attribute [rw] sensitive_value_frequency_lower_bound
    #   @return [Integer]
    #     Lower bound on the sensitive value frequencies of the equivalence
    #     classes in this bucket.
    # @!attribute [rw] sensitive_value_frequency_upper_bound
    #   @return [Integer]
    #     Upper bound on the sensitive value frequencies of the equivalence
    #     classes in this bucket.
    # @!attribute [rw] bucket_size
    #   @return [Integer]
    #     Total number of equivalence classes in this bucket.
    # @!attribute [rw] bucket_values
    #   @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::LDiversityResult::LDiversityEquivalenceClass>]
    #     Sample of equivalence classes in this bucket. The total number of
    #     classes returned per bucket is capped at 20.
    # @!attribute [rw] bucket_value_count
    #   @return [Integer]
    #     Total number of distinct equivalence classes in this bucket.
    class LDiversityHistogramBucket; end
  end

  # Result of the reidentifiability analysis. Note that these results are an
  # estimation, not exact values.
  # @!attribute [rw] k_map_estimation_histogram
  #   @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::KMapEstimationResult::KMapEstimationHistogramBucket>]
  #     The intervals [min_anonymity, max_anonymity] do not overlap. If a value
  #     doesn't correspond to any such interval, the associated frequency is
  #     zero. For example, the following records:
  #       {min_anonymity: 1, max_anonymity: 1, frequency: 17}
  #       {min_anonymity: 2, max_anonymity: 3, frequency: 42}
  #       {min_anonymity: 5, max_anonymity: 10, frequency: 99}
  #     mean that there are no record with an estimated anonymity of 4, 5, or
  #     larger than 10.
  class KMapEstimationResult
    # A tuple of values for the quasi-identifier columns.
    # @!attribute [rw] quasi_ids_values
    #   @return [Array<Google::Privacy::Dlp::V2::Value>]
    #     The quasi-identifier values.
    # @!attribute [rw] estimated_anonymity
    #   @return [Integer]
    #     The estimated anonymity for these quasi-identifier values.
    class KMapEstimationQuasiIdValues; end

    # A KMapEstimationHistogramBucket message with the following values:
    #   min_anonymity: 3
    #   max_anonymity: 5
    #   frequency: 42
    # means that there are 42 records whose quasi-identifier values correspond
    # to 3, 4 or 5 people in the overlying population. An important particular
    # case is when min_anonymity = max_anonymity = 1: the frequency field then
    # corresponds to the number of uniquely identifiable records.
    # @!attribute [rw] min_anonymity
    #   @return [Integer]
    #     Always positive.
    # @!attribute [rw] max_anonymity
    #   @return [Integer]
    #     Always greater than or equal to min_anonymity.
    # @!attribute [rw] bucket_size
    #   @return [Integer]
    #     Number of records within these anonymity bounds.
    # @!attribute [rw] bucket_values
    #   @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::KMapEstimationResult::KMapEstimationQuasiIdValues>]
    #     Sample of quasi-identifier tuple values in this bucket. The total
    #     number of classes returned per bucket is capped at 20.
    # @!attribute [rw] bucket_value_count
    #   @return [Integer]
    #     Total number of distinct quasi-identifier tuple values in this bucket.
    class KMapEstimationHistogramBucket; end
  end

  # Result of the δ-presence computation. Note that these results are an
  # estimation, not exact values.
  # @!attribute [rw] delta_presence_estimation_histogram
  #   @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::DeltaPresenceEstimationResult::DeltaPresenceEstimationHistogramBucket>]
  #     The intervals [min_probability, max_probability) do not overlap. If a
  #     value doesn't correspond to any such interval, the associated frequency
  #     is zero. For example, the following records:
  #       {min_probability: 0, max_probability: 0.1, frequency: 17}
  #       {min_probability: 0.2, max_probability: 0.3, frequency: 42}
  #       {min_probability: 0.3, max_probability: 0.4, frequency: 99}
  #     mean that there are no record with an estimated probability in [0.1, 0.2)
  #     nor larger or equal to 0.4.
  class DeltaPresenceEstimationResult
    # A tuple of values for the quasi-identifier columns.
    # @!attribute [rw] quasi_ids_values
    #   @return [Array<Google::Privacy::Dlp::V2::Value>]
    #     The quasi-identifier values.
    # @!attribute [rw] estimated_probability
    #   @return [Float]
    #     The estimated probability that a given individual sharing these
    #     quasi-identifier values is in the dataset. This value, typically called
    #     δ, is the ratio between the number of records in the dataset with these
    #     quasi-identifier values, and the total number of individuals (inside
    #     *and* outside the dataset) with these quasi-identifier values.
    #     For example, if there are 15 individuals in the dataset who share the
    #     same quasi-identifier values, and an estimated 100 people in the entire
    #     population with these values, then δ is 0.15.
    class DeltaPresenceEstimationQuasiIdValues; end

    # A DeltaPresenceEstimationHistogramBucket message with the following
    # values:
    #   min_probability: 0.1
    #   max_probability: 0.2
    #   frequency: 42
    # means that there are 42 records for which δ is in [0.1, 0.2). An
    # important particular case is when min_probability = max_probability = 1:
    # then, every individual who shares this quasi-identifier combination is in
    # the dataset.
    # @!attribute [rw] min_probability
    #   @return [Float]
    #     Between 0 and 1.
    # @!attribute [rw] max_probability
    #   @return [Float]
    #     Always greater than or equal to min_probability.
    # @!attribute [rw] bucket_size
    #   @return [Integer]
    #     Number of records within these probability bounds.
    # @!attribute [rw] bucket_values
    #   @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::DeltaPresenceEstimationResult::DeltaPresenceEstimationQuasiIdValues>]
    #     Sample of quasi-identifier tuple values in this bucket. The total
    #     number of classes returned per bucket is capped at 20.
    # @!attribute [rw] bucket_value_count
    #   @return [Integer]
    #     Total number of distinct quasi-identifier tuple values in this bucket.
    class DeltaPresenceEstimationHistogramBucket; end
  end
end

#delta_presence_estimation_resultGoogle::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::DeltaPresenceEstimationResult



828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
# File 'lib/google/cloud/dlp/v2/doc/google/privacy/dlp/v2/dlp.rb', line 828

class AnalyzeDataSourceRiskDetails
  # Result of the numerical stats computation.
  # @!attribute [rw] min_value
  #   @return [Google::Privacy::Dlp::V2::Value]
  #     Minimum value appearing in the column.
  # @!attribute [rw] max_value
  #   @return [Google::Privacy::Dlp::V2::Value]
  #     Maximum value appearing in the column.
  # @!attribute [rw] quantile_values
  #   @return [Array<Google::Privacy::Dlp::V2::Value>]
  #     List of 99 values that partition the set of field values into 100 equal
  #     sized buckets.
  class NumericalStatsResult; end

  # Result of the categorical stats computation.
  # @!attribute [rw] value_frequency_histogram_buckets
  #   @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::CategoricalStatsResult::CategoricalStatsHistogramBucket>]
  #     Histogram of value frequencies in the column.
  class CategoricalStatsResult
    # @!attribute [rw] value_frequency_lower_bound
    #   @return [Integer]
    #     Lower bound on the value frequency of the values in this bucket.
    # @!attribute [rw] value_frequency_upper_bound
    #   @return [Integer]
    #     Upper bound on the value frequency of the values in this bucket.
    # @!attribute [rw] bucket_size
    #   @return [Integer]
    #     Total number of values in this bucket.
    # @!attribute [rw] bucket_values
    #   @return [Array<Google::Privacy::Dlp::V2::ValueFrequency>]
    #     Sample of value frequencies in this bucket. The total number of
    #     values returned per bucket is capped at 20.
    # @!attribute [rw] bucket_value_count
    #   @return [Integer]
    #     Total number of distinct values in this bucket.
    class CategoricalStatsHistogramBucket; end
  end

  # Result of the k-anonymity computation.
  # @!attribute [rw] equivalence_class_histogram_buckets
  #   @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::KAnonymityResult::KAnonymityHistogramBucket>]
  #     Histogram of k-anonymity equivalence classes.
  class KAnonymityResult
    # The set of columns' values that share the same ldiversity value
    # @!attribute [rw] quasi_ids_values
    #   @return [Array<Google::Privacy::Dlp::V2::Value>]
    #     Set of values defining the equivalence class. One value per
    #     quasi-identifier column in the original KAnonymity metric message.
    #     The order is always the same as the original request.
    # @!attribute [rw] equivalence_class_size
    #   @return [Integer]
    #     Size of the equivalence class, for example number of rows with the
    #     above set of values.
    class KAnonymityEquivalenceClass; end

    # @!attribute [rw] equivalence_class_size_lower_bound
    #   @return [Integer]
    #     Lower bound on the size of the equivalence classes in this bucket.
    # @!attribute [rw] equivalence_class_size_upper_bound
    #   @return [Integer]
    #     Upper bound on the size of the equivalence classes in this bucket.
    # @!attribute [rw] bucket_size
    #   @return [Integer]
    #     Total number of equivalence classes in this bucket.
    # @!attribute [rw] bucket_values
    #   @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::KAnonymityResult::KAnonymityEquivalenceClass>]
    #     Sample of equivalence classes in this bucket. The total number of
    #     classes returned per bucket is capped at 20.
    # @!attribute [rw] bucket_value_count
    #   @return [Integer]
    #     Total number of distinct equivalence classes in this bucket.
    class KAnonymityHistogramBucket; end
  end

  # Result of the l-diversity computation.
  # @!attribute [rw] sensitive_value_frequency_histogram_buckets
  #   @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::LDiversityResult::LDiversityHistogramBucket>]
  #     Histogram of l-diversity equivalence class sensitive value frequencies.
  class LDiversityResult
    # The set of columns' values that share the same ldiversity value.
    # @!attribute [rw] quasi_ids_values
    #   @return [Array<Google::Privacy::Dlp::V2::Value>]
    #     Quasi-identifier values defining the k-anonymity equivalence
    #     class. The order is always the same as the original request.
    # @!attribute [rw] equivalence_class_size
    #   @return [Integer]
    #     Size of the k-anonymity equivalence class.
    # @!attribute [rw] num_distinct_sensitive_values
    #   @return [Integer]
    #     Number of distinct sensitive values in this equivalence class.
    # @!attribute [rw] top_sensitive_values
    #   @return [Array<Google::Privacy::Dlp::V2::ValueFrequency>]
    #     Estimated frequencies of top sensitive values.
    class LDiversityEquivalenceClass; end

    # @!attribute [rw] sensitive_value_frequency_lower_bound
    #   @return [Integer]
    #     Lower bound on the sensitive value frequencies of the equivalence
    #     classes in this bucket.
    # @!attribute [rw] sensitive_value_frequency_upper_bound
    #   @return [Integer]
    #     Upper bound on the sensitive value frequencies of the equivalence
    #     classes in this bucket.
    # @!attribute [rw] bucket_size
    #   @return [Integer]
    #     Total number of equivalence classes in this bucket.
    # @!attribute [rw] bucket_values
    #   @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::LDiversityResult::LDiversityEquivalenceClass>]
    #     Sample of equivalence classes in this bucket. The total number of
    #     classes returned per bucket is capped at 20.
    # @!attribute [rw] bucket_value_count
    #   @return [Integer]
    #     Total number of distinct equivalence classes in this bucket.
    class LDiversityHistogramBucket; end
  end

  # Result of the reidentifiability analysis. Note that these results are an
  # estimation, not exact values.
  # @!attribute [rw] k_map_estimation_histogram
  #   @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::KMapEstimationResult::KMapEstimationHistogramBucket>]
  #     The intervals [min_anonymity, max_anonymity] do not overlap. If a value
  #     doesn't correspond to any such interval, the associated frequency is
  #     zero. For example, the following records:
  #       {min_anonymity: 1, max_anonymity: 1, frequency: 17}
  #       {min_anonymity: 2, max_anonymity: 3, frequency: 42}
  #       {min_anonymity: 5, max_anonymity: 10, frequency: 99}
  #     mean that there are no record with an estimated anonymity of 4, 5, or
  #     larger than 10.
  class KMapEstimationResult
    # A tuple of values for the quasi-identifier columns.
    # @!attribute [rw] quasi_ids_values
    #   @return [Array<Google::Privacy::Dlp::V2::Value>]
    #     The quasi-identifier values.
    # @!attribute [rw] estimated_anonymity
    #   @return [Integer]
    #     The estimated anonymity for these quasi-identifier values.
    class KMapEstimationQuasiIdValues; end

    # A KMapEstimationHistogramBucket message with the following values:
    #   min_anonymity: 3
    #   max_anonymity: 5
    #   frequency: 42
    # means that there are 42 records whose quasi-identifier values correspond
    # to 3, 4 or 5 people in the overlying population. An important particular
    # case is when min_anonymity = max_anonymity = 1: the frequency field then
    # corresponds to the number of uniquely identifiable records.
    # @!attribute [rw] min_anonymity
    #   @return [Integer]
    #     Always positive.
    # @!attribute [rw] max_anonymity
    #   @return [Integer]
    #     Always greater than or equal to min_anonymity.
    # @!attribute [rw] bucket_size
    #   @return [Integer]
    #     Number of records within these anonymity bounds.
    # @!attribute [rw] bucket_values
    #   @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::KMapEstimationResult::KMapEstimationQuasiIdValues>]
    #     Sample of quasi-identifier tuple values in this bucket. The total
    #     number of classes returned per bucket is capped at 20.
    # @!attribute [rw] bucket_value_count
    #   @return [Integer]
    #     Total number of distinct quasi-identifier tuple values in this bucket.
    class KMapEstimationHistogramBucket; end
  end

  # Result of the δ-presence computation. Note that these results are an
  # estimation, not exact values.
  # @!attribute [rw] delta_presence_estimation_histogram
  #   @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::DeltaPresenceEstimationResult::DeltaPresenceEstimationHistogramBucket>]
  #     The intervals [min_probability, max_probability) do not overlap. If a
  #     value doesn't correspond to any such interval, the associated frequency
  #     is zero. For example, the following records:
  #       {min_probability: 0, max_probability: 0.1, frequency: 17}
  #       {min_probability: 0.2, max_probability: 0.3, frequency: 42}
  #       {min_probability: 0.3, max_probability: 0.4, frequency: 99}
  #     mean that there are no record with an estimated probability in [0.1, 0.2)
  #     nor larger or equal to 0.4.
  class DeltaPresenceEstimationResult
    # A tuple of values for the quasi-identifier columns.
    # @!attribute [rw] quasi_ids_values
    #   @return [Array<Google::Privacy::Dlp::V2::Value>]
    #     The quasi-identifier values.
    # @!attribute [rw] estimated_probability
    #   @return [Float]
    #     The estimated probability that a given individual sharing these
    #     quasi-identifier values is in the dataset. This value, typically called
    #     δ, is the ratio between the number of records in the dataset with these
    #     quasi-identifier values, and the total number of individuals (inside
    #     *and* outside the dataset) with these quasi-identifier values.
    #     For example, if there are 15 individuals in the dataset who share the
    #     same quasi-identifier values, and an estimated 100 people in the entire
    #     population with these values, then δ is 0.15.
    class DeltaPresenceEstimationQuasiIdValues; end

    # A DeltaPresenceEstimationHistogramBucket message with the following
    # values:
    #   min_probability: 0.1
    #   max_probability: 0.2
    #   frequency: 42
    # means that there are 42 records for which δ is in [0.1, 0.2). An
    # important particular case is when min_probability = max_probability = 1:
    # then, every individual who shares this quasi-identifier combination is in
    # the dataset.
    # @!attribute [rw] min_probability
    #   @return [Float]
    #     Between 0 and 1.
    # @!attribute [rw] max_probability
    #   @return [Float]
    #     Always greater than or equal to min_probability.
    # @!attribute [rw] bucket_size
    #   @return [Integer]
    #     Number of records within these probability bounds.
    # @!attribute [rw] bucket_values
    #   @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::DeltaPresenceEstimationResult::DeltaPresenceEstimationQuasiIdValues>]
    #     Sample of quasi-identifier tuple values in this bucket. The total
    #     number of classes returned per bucket is capped at 20.
    # @!attribute [rw] bucket_value_count
    #   @return [Integer]
    #     Total number of distinct quasi-identifier tuple values in this bucket.
    class DeltaPresenceEstimationHistogramBucket; end
  end
end

#k_anonymity_resultGoogle::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::KAnonymityResult



828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
# File 'lib/google/cloud/dlp/v2/doc/google/privacy/dlp/v2/dlp.rb', line 828

class AnalyzeDataSourceRiskDetails
  # Result of the numerical stats computation.
  # @!attribute [rw] min_value
  #   @return [Google::Privacy::Dlp::V2::Value]
  #     Minimum value appearing in the column.
  # @!attribute [rw] max_value
  #   @return [Google::Privacy::Dlp::V2::Value]
  #     Maximum value appearing in the column.
  # @!attribute [rw] quantile_values
  #   @return [Array<Google::Privacy::Dlp::V2::Value>]
  #     List of 99 values that partition the set of field values into 100 equal
  #     sized buckets.
  class NumericalStatsResult; end

  # Result of the categorical stats computation.
  # @!attribute [rw] value_frequency_histogram_buckets
  #   @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::CategoricalStatsResult::CategoricalStatsHistogramBucket>]
  #     Histogram of value frequencies in the column.
  class CategoricalStatsResult
    # @!attribute [rw] value_frequency_lower_bound
    #   @return [Integer]
    #     Lower bound on the value frequency of the values in this bucket.
    # @!attribute [rw] value_frequency_upper_bound
    #   @return [Integer]
    #     Upper bound on the value frequency of the values in this bucket.
    # @!attribute [rw] bucket_size
    #   @return [Integer]
    #     Total number of values in this bucket.
    # @!attribute [rw] bucket_values
    #   @return [Array<Google::Privacy::Dlp::V2::ValueFrequency>]
    #     Sample of value frequencies in this bucket. The total number of
    #     values returned per bucket is capped at 20.
    # @!attribute [rw] bucket_value_count
    #   @return [Integer]
    #     Total number of distinct values in this bucket.
    class CategoricalStatsHistogramBucket; end
  end

  # Result of the k-anonymity computation.
  # @!attribute [rw] equivalence_class_histogram_buckets
  #   @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::KAnonymityResult::KAnonymityHistogramBucket>]
  #     Histogram of k-anonymity equivalence classes.
  class KAnonymityResult
    # The set of columns' values that share the same ldiversity value
    # @!attribute [rw] quasi_ids_values
    #   @return [Array<Google::Privacy::Dlp::V2::Value>]
    #     Set of values defining the equivalence class. One value per
    #     quasi-identifier column in the original KAnonymity metric message.
    #     The order is always the same as the original request.
    # @!attribute [rw] equivalence_class_size
    #   @return [Integer]
    #     Size of the equivalence class, for example number of rows with the
    #     above set of values.
    class KAnonymityEquivalenceClass; end

    # @!attribute [rw] equivalence_class_size_lower_bound
    #   @return [Integer]
    #     Lower bound on the size of the equivalence classes in this bucket.
    # @!attribute [rw] equivalence_class_size_upper_bound
    #   @return [Integer]
    #     Upper bound on the size of the equivalence classes in this bucket.
    # @!attribute [rw] bucket_size
    #   @return [Integer]
    #     Total number of equivalence classes in this bucket.
    # @!attribute [rw] bucket_values
    #   @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::KAnonymityResult::KAnonymityEquivalenceClass>]
    #     Sample of equivalence classes in this bucket. The total number of
    #     classes returned per bucket is capped at 20.
    # @!attribute [rw] bucket_value_count
    #   @return [Integer]
    #     Total number of distinct equivalence classes in this bucket.
    class KAnonymityHistogramBucket; end
  end

  # Result of the l-diversity computation.
  # @!attribute [rw] sensitive_value_frequency_histogram_buckets
  #   @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::LDiversityResult::LDiversityHistogramBucket>]
  #     Histogram of l-diversity equivalence class sensitive value frequencies.
  class LDiversityResult
    # The set of columns' values that share the same ldiversity value.
    # @!attribute [rw] quasi_ids_values
    #   @return [Array<Google::Privacy::Dlp::V2::Value>]
    #     Quasi-identifier values defining the k-anonymity equivalence
    #     class. The order is always the same as the original request.
    # @!attribute [rw] equivalence_class_size
    #   @return [Integer]
    #     Size of the k-anonymity equivalence class.
    # @!attribute [rw] num_distinct_sensitive_values
    #   @return [Integer]
    #     Number of distinct sensitive values in this equivalence class.
    # @!attribute [rw] top_sensitive_values
    #   @return [Array<Google::Privacy::Dlp::V2::ValueFrequency>]
    #     Estimated frequencies of top sensitive values.
    class LDiversityEquivalenceClass; end

    # @!attribute [rw] sensitive_value_frequency_lower_bound
    #   @return [Integer]
    #     Lower bound on the sensitive value frequencies of the equivalence
    #     classes in this bucket.
    # @!attribute [rw] sensitive_value_frequency_upper_bound
    #   @return [Integer]
    #     Upper bound on the sensitive value frequencies of the equivalence
    #     classes in this bucket.
    # @!attribute [rw] bucket_size
    #   @return [Integer]
    #     Total number of equivalence classes in this bucket.
    # @!attribute [rw] bucket_values
    #   @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::LDiversityResult::LDiversityEquivalenceClass>]
    #     Sample of equivalence classes in this bucket. The total number of
    #     classes returned per bucket is capped at 20.
    # @!attribute [rw] bucket_value_count
    #   @return [Integer]
    #     Total number of distinct equivalence classes in this bucket.
    class LDiversityHistogramBucket; end
  end

  # Result of the reidentifiability analysis. Note that these results are an
  # estimation, not exact values.
  # @!attribute [rw] k_map_estimation_histogram
  #   @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::KMapEstimationResult::KMapEstimationHistogramBucket>]
  #     The intervals [min_anonymity, max_anonymity] do not overlap. If a value
  #     doesn't correspond to any such interval, the associated frequency is
  #     zero. For example, the following records:
  #       {min_anonymity: 1, max_anonymity: 1, frequency: 17}
  #       {min_anonymity: 2, max_anonymity: 3, frequency: 42}
  #       {min_anonymity: 5, max_anonymity: 10, frequency: 99}
  #     mean that there are no record with an estimated anonymity of 4, 5, or
  #     larger than 10.
  class KMapEstimationResult
    # A tuple of values for the quasi-identifier columns.
    # @!attribute [rw] quasi_ids_values
    #   @return [Array<Google::Privacy::Dlp::V2::Value>]
    #     The quasi-identifier values.
    # @!attribute [rw] estimated_anonymity
    #   @return [Integer]
    #     The estimated anonymity for these quasi-identifier values.
    class KMapEstimationQuasiIdValues; end

    # A KMapEstimationHistogramBucket message with the following values:
    #   min_anonymity: 3
    #   max_anonymity: 5
    #   frequency: 42
    # means that there are 42 records whose quasi-identifier values correspond
    # to 3, 4 or 5 people in the overlying population. An important particular
    # case is when min_anonymity = max_anonymity = 1: the frequency field then
    # corresponds to the number of uniquely identifiable records.
    # @!attribute [rw] min_anonymity
    #   @return [Integer]
    #     Always positive.
    # @!attribute [rw] max_anonymity
    #   @return [Integer]
    #     Always greater than or equal to min_anonymity.
    # @!attribute [rw] bucket_size
    #   @return [Integer]
    #     Number of records within these anonymity bounds.
    # @!attribute [rw] bucket_values
    #   @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::KMapEstimationResult::KMapEstimationQuasiIdValues>]
    #     Sample of quasi-identifier tuple values in this bucket. The total
    #     number of classes returned per bucket is capped at 20.
    # @!attribute [rw] bucket_value_count
    #   @return [Integer]
    #     Total number of distinct quasi-identifier tuple values in this bucket.
    class KMapEstimationHistogramBucket; end
  end

  # Result of the δ-presence computation. Note that these results are an
  # estimation, not exact values.
  # @!attribute [rw] delta_presence_estimation_histogram
  #   @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::DeltaPresenceEstimationResult::DeltaPresenceEstimationHistogramBucket>]
  #     The intervals [min_probability, max_probability) do not overlap. If a
  #     value doesn't correspond to any such interval, the associated frequency
  #     is zero. For example, the following records:
  #       {min_probability: 0, max_probability: 0.1, frequency: 17}
  #       {min_probability: 0.2, max_probability: 0.3, frequency: 42}
  #       {min_probability: 0.3, max_probability: 0.4, frequency: 99}
  #     mean that there are no record with an estimated probability in [0.1, 0.2)
  #     nor larger or equal to 0.4.
  class DeltaPresenceEstimationResult
    # A tuple of values for the quasi-identifier columns.
    # @!attribute [rw] quasi_ids_values
    #   @return [Array<Google::Privacy::Dlp::V2::Value>]
    #     The quasi-identifier values.
    # @!attribute [rw] estimated_probability
    #   @return [Float]
    #     The estimated probability that a given individual sharing these
    #     quasi-identifier values is in the dataset. This value, typically called
    #     δ, is the ratio between the number of records in the dataset with these
    #     quasi-identifier values, and the total number of individuals (inside
    #     *and* outside the dataset) with these quasi-identifier values.
    #     For example, if there are 15 individuals in the dataset who share the
    #     same quasi-identifier values, and an estimated 100 people in the entire
    #     population with these values, then δ is 0.15.
    class DeltaPresenceEstimationQuasiIdValues; end

    # A DeltaPresenceEstimationHistogramBucket message with the following
    # values:
    #   min_probability: 0.1
    #   max_probability: 0.2
    #   frequency: 42
    # means that there are 42 records for which δ is in [0.1, 0.2). An
    # important particular case is when min_probability = max_probability = 1:
    # then, every individual who shares this quasi-identifier combination is in
    # the dataset.
    # @!attribute [rw] min_probability
    #   @return [Float]
    #     Between 0 and 1.
    # @!attribute [rw] max_probability
    #   @return [Float]
    #     Always greater than or equal to min_probability.
    # @!attribute [rw] bucket_size
    #   @return [Integer]
    #     Number of records within these probability bounds.
    # @!attribute [rw] bucket_values
    #   @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::DeltaPresenceEstimationResult::DeltaPresenceEstimationQuasiIdValues>]
    #     Sample of quasi-identifier tuple values in this bucket. The total
    #     number of classes returned per bucket is capped at 20.
    # @!attribute [rw] bucket_value_count
    #   @return [Integer]
    #     Total number of distinct quasi-identifier tuple values in this bucket.
    class DeltaPresenceEstimationHistogramBucket; end
  end
end

#k_map_estimation_resultGoogle::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::KMapEstimationResult



828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
# File 'lib/google/cloud/dlp/v2/doc/google/privacy/dlp/v2/dlp.rb', line 828

class AnalyzeDataSourceRiskDetails
  # Result of the numerical stats computation.
  # @!attribute [rw] min_value
  #   @return [Google::Privacy::Dlp::V2::Value]
  #     Minimum value appearing in the column.
  # @!attribute [rw] max_value
  #   @return [Google::Privacy::Dlp::V2::Value]
  #     Maximum value appearing in the column.
  # @!attribute [rw] quantile_values
  #   @return [Array<Google::Privacy::Dlp::V2::Value>]
  #     List of 99 values that partition the set of field values into 100 equal
  #     sized buckets.
  class NumericalStatsResult; end

  # Result of the categorical stats computation.
  # @!attribute [rw] value_frequency_histogram_buckets
  #   @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::CategoricalStatsResult::CategoricalStatsHistogramBucket>]
  #     Histogram of value frequencies in the column.
  class CategoricalStatsResult
    # @!attribute [rw] value_frequency_lower_bound
    #   @return [Integer]
    #     Lower bound on the value frequency of the values in this bucket.
    # @!attribute [rw] value_frequency_upper_bound
    #   @return [Integer]
    #     Upper bound on the value frequency of the values in this bucket.
    # @!attribute [rw] bucket_size
    #   @return [Integer]
    #     Total number of values in this bucket.
    # @!attribute [rw] bucket_values
    #   @return [Array<Google::Privacy::Dlp::V2::ValueFrequency>]
    #     Sample of value frequencies in this bucket. The total number of
    #     values returned per bucket is capped at 20.
    # @!attribute [rw] bucket_value_count
    #   @return [Integer]
    #     Total number of distinct values in this bucket.
    class CategoricalStatsHistogramBucket; end
  end

  # Result of the k-anonymity computation.
  # @!attribute [rw] equivalence_class_histogram_buckets
  #   @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::KAnonymityResult::KAnonymityHistogramBucket>]
  #     Histogram of k-anonymity equivalence classes.
  class KAnonymityResult
    # The set of columns' values that share the same ldiversity value
    # @!attribute [rw] quasi_ids_values
    #   @return [Array<Google::Privacy::Dlp::V2::Value>]
    #     Set of values defining the equivalence class. One value per
    #     quasi-identifier column in the original KAnonymity metric message.
    #     The order is always the same as the original request.
    # @!attribute [rw] equivalence_class_size
    #   @return [Integer]
    #     Size of the equivalence class, for example number of rows with the
    #     above set of values.
    class KAnonymityEquivalenceClass; end

    # @!attribute [rw] equivalence_class_size_lower_bound
    #   @return [Integer]
    #     Lower bound on the size of the equivalence classes in this bucket.
    # @!attribute [rw] equivalence_class_size_upper_bound
    #   @return [Integer]
    #     Upper bound on the size of the equivalence classes in this bucket.
    # @!attribute [rw] bucket_size
    #   @return [Integer]
    #     Total number of equivalence classes in this bucket.
    # @!attribute [rw] bucket_values
    #   @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::KAnonymityResult::KAnonymityEquivalenceClass>]
    #     Sample of equivalence classes in this bucket. The total number of
    #     classes returned per bucket is capped at 20.
    # @!attribute [rw] bucket_value_count
    #   @return [Integer]
    #     Total number of distinct equivalence classes in this bucket.
    class KAnonymityHistogramBucket; end
  end

  # Result of the l-diversity computation.
  # @!attribute [rw] sensitive_value_frequency_histogram_buckets
  #   @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::LDiversityResult::LDiversityHistogramBucket>]
  #     Histogram of l-diversity equivalence class sensitive value frequencies.
  class LDiversityResult
    # The set of columns' values that share the same ldiversity value.
    # @!attribute [rw] quasi_ids_values
    #   @return [Array<Google::Privacy::Dlp::V2::Value>]
    #     Quasi-identifier values defining the k-anonymity equivalence
    #     class. The order is always the same as the original request.
    # @!attribute [rw] equivalence_class_size
    #   @return [Integer]
    #     Size of the k-anonymity equivalence class.
    # @!attribute [rw] num_distinct_sensitive_values
    #   @return [Integer]
    #     Number of distinct sensitive values in this equivalence class.
    # @!attribute [rw] top_sensitive_values
    #   @return [Array<Google::Privacy::Dlp::V2::ValueFrequency>]
    #     Estimated frequencies of top sensitive values.
    class LDiversityEquivalenceClass; end

    # @!attribute [rw] sensitive_value_frequency_lower_bound
    #   @return [Integer]
    #     Lower bound on the sensitive value frequencies of the equivalence
    #     classes in this bucket.
    # @!attribute [rw] sensitive_value_frequency_upper_bound
    #   @return [Integer]
    #     Upper bound on the sensitive value frequencies of the equivalence
    #     classes in this bucket.
    # @!attribute [rw] bucket_size
    #   @return [Integer]
    #     Total number of equivalence classes in this bucket.
    # @!attribute [rw] bucket_values
    #   @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::LDiversityResult::LDiversityEquivalenceClass>]
    #     Sample of equivalence classes in this bucket. The total number of
    #     classes returned per bucket is capped at 20.
    # @!attribute [rw] bucket_value_count
    #   @return [Integer]
    #     Total number of distinct equivalence classes in this bucket.
    class LDiversityHistogramBucket; end
  end

  # Result of the reidentifiability analysis. Note that these results are an
  # estimation, not exact values.
  # @!attribute [rw] k_map_estimation_histogram
  #   @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::KMapEstimationResult::KMapEstimationHistogramBucket>]
  #     The intervals [min_anonymity, max_anonymity] do not overlap. If a value
  #     doesn't correspond to any such interval, the associated frequency is
  #     zero. For example, the following records:
  #       {min_anonymity: 1, max_anonymity: 1, frequency: 17}
  #       {min_anonymity: 2, max_anonymity: 3, frequency: 42}
  #       {min_anonymity: 5, max_anonymity: 10, frequency: 99}
  #     mean that there are no record with an estimated anonymity of 4, 5, or
  #     larger than 10.
  class KMapEstimationResult
    # A tuple of values for the quasi-identifier columns.
    # @!attribute [rw] quasi_ids_values
    #   @return [Array<Google::Privacy::Dlp::V2::Value>]
    #     The quasi-identifier values.
    # @!attribute [rw] estimated_anonymity
    #   @return [Integer]
    #     The estimated anonymity for these quasi-identifier values.
    class KMapEstimationQuasiIdValues; end

    # A KMapEstimationHistogramBucket message with the following values:
    #   min_anonymity: 3
    #   max_anonymity: 5
    #   frequency: 42
    # means that there are 42 records whose quasi-identifier values correspond
    # to 3, 4 or 5 people in the overlying population. An important particular
    # case is when min_anonymity = max_anonymity = 1: the frequency field then
    # corresponds to the number of uniquely identifiable records.
    # @!attribute [rw] min_anonymity
    #   @return [Integer]
    #     Always positive.
    # @!attribute [rw] max_anonymity
    #   @return [Integer]
    #     Always greater than or equal to min_anonymity.
    # @!attribute [rw] bucket_size
    #   @return [Integer]
    #     Number of records within these anonymity bounds.
    # @!attribute [rw] bucket_values
    #   @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::KMapEstimationResult::KMapEstimationQuasiIdValues>]
    #     Sample of quasi-identifier tuple values in this bucket. The total
    #     number of classes returned per bucket is capped at 20.
    # @!attribute [rw] bucket_value_count
    #   @return [Integer]
    #     Total number of distinct quasi-identifier tuple values in this bucket.
    class KMapEstimationHistogramBucket; end
  end

  # Result of the δ-presence computation. Note that these results are an
  # estimation, not exact values.
  # @!attribute [rw] delta_presence_estimation_histogram
  #   @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::DeltaPresenceEstimationResult::DeltaPresenceEstimationHistogramBucket>]
  #     The intervals [min_probability, max_probability) do not overlap. If a
  #     value doesn't correspond to any such interval, the associated frequency
  #     is zero. For example, the following records:
  #       {min_probability: 0, max_probability: 0.1, frequency: 17}
  #       {min_probability: 0.2, max_probability: 0.3, frequency: 42}
  #       {min_probability: 0.3, max_probability: 0.4, frequency: 99}
  #     mean that there are no record with an estimated probability in [0.1, 0.2)
  #     nor larger or equal to 0.4.
  class DeltaPresenceEstimationResult
    # A tuple of values for the quasi-identifier columns.
    # @!attribute [rw] quasi_ids_values
    #   @return [Array<Google::Privacy::Dlp::V2::Value>]
    #     The quasi-identifier values.
    # @!attribute [rw] estimated_probability
    #   @return [Float]
    #     The estimated probability that a given individual sharing these
    #     quasi-identifier values is in the dataset. This value, typically called
    #     δ, is the ratio between the number of records in the dataset with these
    #     quasi-identifier values, and the total number of individuals (inside
    #     *and* outside the dataset) with these quasi-identifier values.
    #     For example, if there are 15 individuals in the dataset who share the
    #     same quasi-identifier values, and an estimated 100 people in the entire
    #     population with these values, then δ is 0.15.
    class DeltaPresenceEstimationQuasiIdValues; end

    # A DeltaPresenceEstimationHistogramBucket message with the following
    # values:
    #   min_probability: 0.1
    #   max_probability: 0.2
    #   frequency: 42
    # means that there are 42 records for which δ is in [0.1, 0.2). An
    # important particular case is when min_probability = max_probability = 1:
    # then, every individual who shares this quasi-identifier combination is in
    # the dataset.
    # @!attribute [rw] min_probability
    #   @return [Float]
    #     Between 0 and 1.
    # @!attribute [rw] max_probability
    #   @return [Float]
    #     Always greater than or equal to min_probability.
    # @!attribute [rw] bucket_size
    #   @return [Integer]
    #     Number of records within these probability bounds.
    # @!attribute [rw] bucket_values
    #   @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::DeltaPresenceEstimationResult::DeltaPresenceEstimationQuasiIdValues>]
    #     Sample of quasi-identifier tuple values in this bucket. The total
    #     number of classes returned per bucket is capped at 20.
    # @!attribute [rw] bucket_value_count
    #   @return [Integer]
    #     Total number of distinct quasi-identifier tuple values in this bucket.
    class DeltaPresenceEstimationHistogramBucket; end
  end
end

#l_diversity_resultGoogle::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::LDiversityResult



828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
# File 'lib/google/cloud/dlp/v2/doc/google/privacy/dlp/v2/dlp.rb', line 828

class AnalyzeDataSourceRiskDetails
  # Result of the numerical stats computation.
  # @!attribute [rw] min_value
  #   @return [Google::Privacy::Dlp::V2::Value]
  #     Minimum value appearing in the column.
  # @!attribute [rw] max_value
  #   @return [Google::Privacy::Dlp::V2::Value]
  #     Maximum value appearing in the column.
  # @!attribute [rw] quantile_values
  #   @return [Array<Google::Privacy::Dlp::V2::Value>]
  #     List of 99 values that partition the set of field values into 100 equal
  #     sized buckets.
  class NumericalStatsResult; end

  # Result of the categorical stats computation.
  # @!attribute [rw] value_frequency_histogram_buckets
  #   @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::CategoricalStatsResult::CategoricalStatsHistogramBucket>]
  #     Histogram of value frequencies in the column.
  class CategoricalStatsResult
    # @!attribute [rw] value_frequency_lower_bound
    #   @return [Integer]
    #     Lower bound on the value frequency of the values in this bucket.
    # @!attribute [rw] value_frequency_upper_bound
    #   @return [Integer]
    #     Upper bound on the value frequency of the values in this bucket.
    # @!attribute [rw] bucket_size
    #   @return [Integer]
    #     Total number of values in this bucket.
    # @!attribute [rw] bucket_values
    #   @return [Array<Google::Privacy::Dlp::V2::ValueFrequency>]
    #     Sample of value frequencies in this bucket. The total number of
    #     values returned per bucket is capped at 20.
    # @!attribute [rw] bucket_value_count
    #   @return [Integer]
    #     Total number of distinct values in this bucket.
    class CategoricalStatsHistogramBucket; end
  end

  # Result of the k-anonymity computation.
  # @!attribute [rw] equivalence_class_histogram_buckets
  #   @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::KAnonymityResult::KAnonymityHistogramBucket>]
  #     Histogram of k-anonymity equivalence classes.
  class KAnonymityResult
    # The set of columns' values that share the same ldiversity value
    # @!attribute [rw] quasi_ids_values
    #   @return [Array<Google::Privacy::Dlp::V2::Value>]
    #     Set of values defining the equivalence class. One value per
    #     quasi-identifier column in the original KAnonymity metric message.
    #     The order is always the same as the original request.
    # @!attribute [rw] equivalence_class_size
    #   @return [Integer]
    #     Size of the equivalence class, for example number of rows with the
    #     above set of values.
    class KAnonymityEquivalenceClass; end

    # @!attribute [rw] equivalence_class_size_lower_bound
    #   @return [Integer]
    #     Lower bound on the size of the equivalence classes in this bucket.
    # @!attribute [rw] equivalence_class_size_upper_bound
    #   @return [Integer]
    #     Upper bound on the size of the equivalence classes in this bucket.
    # @!attribute [rw] bucket_size
    #   @return [Integer]
    #     Total number of equivalence classes in this bucket.
    # @!attribute [rw] bucket_values
    #   @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::KAnonymityResult::KAnonymityEquivalenceClass>]
    #     Sample of equivalence classes in this bucket. The total number of
    #     classes returned per bucket is capped at 20.
    # @!attribute [rw] bucket_value_count
    #   @return [Integer]
    #     Total number of distinct equivalence classes in this bucket.
    class KAnonymityHistogramBucket; end
  end

  # Result of the l-diversity computation.
  # @!attribute [rw] sensitive_value_frequency_histogram_buckets
  #   @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::LDiversityResult::LDiversityHistogramBucket>]
  #     Histogram of l-diversity equivalence class sensitive value frequencies.
  class LDiversityResult
    # The set of columns' values that share the same ldiversity value.
    # @!attribute [rw] quasi_ids_values
    #   @return [Array<Google::Privacy::Dlp::V2::Value>]
    #     Quasi-identifier values defining the k-anonymity equivalence
    #     class. The order is always the same as the original request.
    # @!attribute [rw] equivalence_class_size
    #   @return [Integer]
    #     Size of the k-anonymity equivalence class.
    # @!attribute [rw] num_distinct_sensitive_values
    #   @return [Integer]
    #     Number of distinct sensitive values in this equivalence class.
    # @!attribute [rw] top_sensitive_values
    #   @return [Array<Google::Privacy::Dlp::V2::ValueFrequency>]
    #     Estimated frequencies of top sensitive values.
    class LDiversityEquivalenceClass; end

    # @!attribute [rw] sensitive_value_frequency_lower_bound
    #   @return [Integer]
    #     Lower bound on the sensitive value frequencies of the equivalence
    #     classes in this bucket.
    # @!attribute [rw] sensitive_value_frequency_upper_bound
    #   @return [Integer]
    #     Upper bound on the sensitive value frequencies of the equivalence
    #     classes in this bucket.
    # @!attribute [rw] bucket_size
    #   @return [Integer]
    #     Total number of equivalence classes in this bucket.
    # @!attribute [rw] bucket_values
    #   @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::LDiversityResult::LDiversityEquivalenceClass>]
    #     Sample of equivalence classes in this bucket. The total number of
    #     classes returned per bucket is capped at 20.
    # @!attribute [rw] bucket_value_count
    #   @return [Integer]
    #     Total number of distinct equivalence classes in this bucket.
    class LDiversityHistogramBucket; end
  end

  # Result of the reidentifiability analysis. Note that these results are an
  # estimation, not exact values.
  # @!attribute [rw] k_map_estimation_histogram
  #   @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::KMapEstimationResult::KMapEstimationHistogramBucket>]
  #     The intervals [min_anonymity, max_anonymity] do not overlap. If a value
  #     doesn't correspond to any such interval, the associated frequency is
  #     zero. For example, the following records:
  #       {min_anonymity: 1, max_anonymity: 1, frequency: 17}
  #       {min_anonymity: 2, max_anonymity: 3, frequency: 42}
  #       {min_anonymity: 5, max_anonymity: 10, frequency: 99}
  #     mean that there are no record with an estimated anonymity of 4, 5, or
  #     larger than 10.
  class KMapEstimationResult
    # A tuple of values for the quasi-identifier columns.
    # @!attribute [rw] quasi_ids_values
    #   @return [Array<Google::Privacy::Dlp::V2::Value>]
    #     The quasi-identifier values.
    # @!attribute [rw] estimated_anonymity
    #   @return [Integer]
    #     The estimated anonymity for these quasi-identifier values.
    class KMapEstimationQuasiIdValues; end

    # A KMapEstimationHistogramBucket message with the following values:
    #   min_anonymity: 3
    #   max_anonymity: 5
    #   frequency: 42
    # means that there are 42 records whose quasi-identifier values correspond
    # to 3, 4 or 5 people in the overlying population. An important particular
    # case is when min_anonymity = max_anonymity = 1: the frequency field then
    # corresponds to the number of uniquely identifiable records.
    # @!attribute [rw] min_anonymity
    #   @return [Integer]
    #     Always positive.
    # @!attribute [rw] max_anonymity
    #   @return [Integer]
    #     Always greater than or equal to min_anonymity.
    # @!attribute [rw] bucket_size
    #   @return [Integer]
    #     Number of records within these anonymity bounds.
    # @!attribute [rw] bucket_values
    #   @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::KMapEstimationResult::KMapEstimationQuasiIdValues>]
    #     Sample of quasi-identifier tuple values in this bucket. The total
    #     number of classes returned per bucket is capped at 20.
    # @!attribute [rw] bucket_value_count
    #   @return [Integer]
    #     Total number of distinct quasi-identifier tuple values in this bucket.
    class KMapEstimationHistogramBucket; end
  end

  # Result of the δ-presence computation. Note that these results are an
  # estimation, not exact values.
  # @!attribute [rw] delta_presence_estimation_histogram
  #   @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::DeltaPresenceEstimationResult::DeltaPresenceEstimationHistogramBucket>]
  #     The intervals [min_probability, max_probability) do not overlap. If a
  #     value doesn't correspond to any such interval, the associated frequency
  #     is zero. For example, the following records:
  #       {min_probability: 0, max_probability: 0.1, frequency: 17}
  #       {min_probability: 0.2, max_probability: 0.3, frequency: 42}
  #       {min_probability: 0.3, max_probability: 0.4, frequency: 99}
  #     mean that there are no record with an estimated probability in [0.1, 0.2)
  #     nor larger or equal to 0.4.
  class DeltaPresenceEstimationResult
    # A tuple of values for the quasi-identifier columns.
    # @!attribute [rw] quasi_ids_values
    #   @return [Array<Google::Privacy::Dlp::V2::Value>]
    #     The quasi-identifier values.
    # @!attribute [rw] estimated_probability
    #   @return [Float]
    #     The estimated probability that a given individual sharing these
    #     quasi-identifier values is in the dataset. This value, typically called
    #     δ, is the ratio between the number of records in the dataset with these
    #     quasi-identifier values, and the total number of individuals (inside
    #     *and* outside the dataset) with these quasi-identifier values.
    #     For example, if there are 15 individuals in the dataset who share the
    #     same quasi-identifier values, and an estimated 100 people in the entire
    #     population with these values, then δ is 0.15.
    class DeltaPresenceEstimationQuasiIdValues; end

    # A DeltaPresenceEstimationHistogramBucket message with the following
    # values:
    #   min_probability: 0.1
    #   max_probability: 0.2
    #   frequency: 42
    # means that there are 42 records for which δ is in [0.1, 0.2). An
    # important particular case is when min_probability = max_probability = 1:
    # then, every individual who shares this quasi-identifier combination is in
    # the dataset.
    # @!attribute [rw] min_probability
    #   @return [Float]
    #     Between 0 and 1.
    # @!attribute [rw] max_probability
    #   @return [Float]
    #     Always greater than or equal to min_probability.
    # @!attribute [rw] bucket_size
    #   @return [Integer]
    #     Number of records within these probability bounds.
    # @!attribute [rw] bucket_values
    #   @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::DeltaPresenceEstimationResult::DeltaPresenceEstimationQuasiIdValues>]
    #     Sample of quasi-identifier tuple values in this bucket. The total
    #     number of classes returned per bucket is capped at 20.
    # @!attribute [rw] bucket_value_count
    #   @return [Integer]
    #     Total number of distinct quasi-identifier tuple values in this bucket.
    class DeltaPresenceEstimationHistogramBucket; end
  end
end

#numerical_stats_resultGoogle::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::NumericalStatsResult



828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
# File 'lib/google/cloud/dlp/v2/doc/google/privacy/dlp/v2/dlp.rb', line 828

class AnalyzeDataSourceRiskDetails
  # Result of the numerical stats computation.
  # @!attribute [rw] min_value
  #   @return [Google::Privacy::Dlp::V2::Value]
  #     Minimum value appearing in the column.
  # @!attribute [rw] max_value
  #   @return [Google::Privacy::Dlp::V2::Value]
  #     Maximum value appearing in the column.
  # @!attribute [rw] quantile_values
  #   @return [Array<Google::Privacy::Dlp::V2::Value>]
  #     List of 99 values that partition the set of field values into 100 equal
  #     sized buckets.
  class NumericalStatsResult; end

  # Result of the categorical stats computation.
  # @!attribute [rw] value_frequency_histogram_buckets
  #   @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::CategoricalStatsResult::CategoricalStatsHistogramBucket>]
  #     Histogram of value frequencies in the column.
  class CategoricalStatsResult
    # @!attribute [rw] value_frequency_lower_bound
    #   @return [Integer]
    #     Lower bound on the value frequency of the values in this bucket.
    # @!attribute [rw] value_frequency_upper_bound
    #   @return [Integer]
    #     Upper bound on the value frequency of the values in this bucket.
    # @!attribute [rw] bucket_size
    #   @return [Integer]
    #     Total number of values in this bucket.
    # @!attribute [rw] bucket_values
    #   @return [Array<Google::Privacy::Dlp::V2::ValueFrequency>]
    #     Sample of value frequencies in this bucket. The total number of
    #     values returned per bucket is capped at 20.
    # @!attribute [rw] bucket_value_count
    #   @return [Integer]
    #     Total number of distinct values in this bucket.
    class CategoricalStatsHistogramBucket; end
  end

  # Result of the k-anonymity computation.
  # @!attribute [rw] equivalence_class_histogram_buckets
  #   @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::KAnonymityResult::KAnonymityHistogramBucket>]
  #     Histogram of k-anonymity equivalence classes.
  class KAnonymityResult
    # The set of columns' values that share the same ldiversity value
    # @!attribute [rw] quasi_ids_values
    #   @return [Array<Google::Privacy::Dlp::V2::Value>]
    #     Set of values defining the equivalence class. One value per
    #     quasi-identifier column in the original KAnonymity metric message.
    #     The order is always the same as the original request.
    # @!attribute [rw] equivalence_class_size
    #   @return [Integer]
    #     Size of the equivalence class, for example number of rows with the
    #     above set of values.
    class KAnonymityEquivalenceClass; end

    # @!attribute [rw] equivalence_class_size_lower_bound
    #   @return [Integer]
    #     Lower bound on the size of the equivalence classes in this bucket.
    # @!attribute [rw] equivalence_class_size_upper_bound
    #   @return [Integer]
    #     Upper bound on the size of the equivalence classes in this bucket.
    # @!attribute [rw] bucket_size
    #   @return [Integer]
    #     Total number of equivalence classes in this bucket.
    # @!attribute [rw] bucket_values
    #   @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::KAnonymityResult::KAnonymityEquivalenceClass>]
    #     Sample of equivalence classes in this bucket. The total number of
    #     classes returned per bucket is capped at 20.
    # @!attribute [rw] bucket_value_count
    #   @return [Integer]
    #     Total number of distinct equivalence classes in this bucket.
    class KAnonymityHistogramBucket; end
  end

  # Result of the l-diversity computation.
  # @!attribute [rw] sensitive_value_frequency_histogram_buckets
  #   @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::LDiversityResult::LDiversityHistogramBucket>]
  #     Histogram of l-diversity equivalence class sensitive value frequencies.
  class LDiversityResult
    # The set of columns' values that share the same ldiversity value.
    # @!attribute [rw] quasi_ids_values
    #   @return [Array<Google::Privacy::Dlp::V2::Value>]
    #     Quasi-identifier values defining the k-anonymity equivalence
    #     class. The order is always the same as the original request.
    # @!attribute [rw] equivalence_class_size
    #   @return [Integer]
    #     Size of the k-anonymity equivalence class.
    # @!attribute [rw] num_distinct_sensitive_values
    #   @return [Integer]
    #     Number of distinct sensitive values in this equivalence class.
    # @!attribute [rw] top_sensitive_values
    #   @return [Array<Google::Privacy::Dlp::V2::ValueFrequency>]
    #     Estimated frequencies of top sensitive values.
    class LDiversityEquivalenceClass; end

    # @!attribute [rw] sensitive_value_frequency_lower_bound
    #   @return [Integer]
    #     Lower bound on the sensitive value frequencies of the equivalence
    #     classes in this bucket.
    # @!attribute [rw] sensitive_value_frequency_upper_bound
    #   @return [Integer]
    #     Upper bound on the sensitive value frequencies of the equivalence
    #     classes in this bucket.
    # @!attribute [rw] bucket_size
    #   @return [Integer]
    #     Total number of equivalence classes in this bucket.
    # @!attribute [rw] bucket_values
    #   @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::LDiversityResult::LDiversityEquivalenceClass>]
    #     Sample of equivalence classes in this bucket. The total number of
    #     classes returned per bucket is capped at 20.
    # @!attribute [rw] bucket_value_count
    #   @return [Integer]
    #     Total number of distinct equivalence classes in this bucket.
    class LDiversityHistogramBucket; end
  end

  # Result of the reidentifiability analysis. Note that these results are an
  # estimation, not exact values.
  # @!attribute [rw] k_map_estimation_histogram
  #   @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::KMapEstimationResult::KMapEstimationHistogramBucket>]
  #     The intervals [min_anonymity, max_anonymity] do not overlap. If a value
  #     doesn't correspond to any such interval, the associated frequency is
  #     zero. For example, the following records:
  #       {min_anonymity: 1, max_anonymity: 1, frequency: 17}
  #       {min_anonymity: 2, max_anonymity: 3, frequency: 42}
  #       {min_anonymity: 5, max_anonymity: 10, frequency: 99}
  #     mean that there are no record with an estimated anonymity of 4, 5, or
  #     larger than 10.
  class KMapEstimationResult
    # A tuple of values for the quasi-identifier columns.
    # @!attribute [rw] quasi_ids_values
    #   @return [Array<Google::Privacy::Dlp::V2::Value>]
    #     The quasi-identifier values.
    # @!attribute [rw] estimated_anonymity
    #   @return [Integer]
    #     The estimated anonymity for these quasi-identifier values.
    class KMapEstimationQuasiIdValues; end

    # A KMapEstimationHistogramBucket message with the following values:
    #   min_anonymity: 3
    #   max_anonymity: 5
    #   frequency: 42
    # means that there are 42 records whose quasi-identifier values correspond
    # to 3, 4 or 5 people in the overlying population. An important particular
    # case is when min_anonymity = max_anonymity = 1: the frequency field then
    # corresponds to the number of uniquely identifiable records.
    # @!attribute [rw] min_anonymity
    #   @return [Integer]
    #     Always positive.
    # @!attribute [rw] max_anonymity
    #   @return [Integer]
    #     Always greater than or equal to min_anonymity.
    # @!attribute [rw] bucket_size
    #   @return [Integer]
    #     Number of records within these anonymity bounds.
    # @!attribute [rw] bucket_values
    #   @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::KMapEstimationResult::KMapEstimationQuasiIdValues>]
    #     Sample of quasi-identifier tuple values in this bucket. The total
    #     number of classes returned per bucket is capped at 20.
    # @!attribute [rw] bucket_value_count
    #   @return [Integer]
    #     Total number of distinct quasi-identifier tuple values in this bucket.
    class KMapEstimationHistogramBucket; end
  end

  # Result of the δ-presence computation. Note that these results are an
  # estimation, not exact values.
  # @!attribute [rw] delta_presence_estimation_histogram
  #   @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::DeltaPresenceEstimationResult::DeltaPresenceEstimationHistogramBucket>]
  #     The intervals [min_probability, max_probability) do not overlap. If a
  #     value doesn't correspond to any such interval, the associated frequency
  #     is zero. For example, the following records:
  #       {min_probability: 0, max_probability: 0.1, frequency: 17}
  #       {min_probability: 0.2, max_probability: 0.3, frequency: 42}
  #       {min_probability: 0.3, max_probability: 0.4, frequency: 99}
  #     mean that there are no record with an estimated probability in [0.1, 0.2)
  #     nor larger or equal to 0.4.
  class DeltaPresenceEstimationResult
    # A tuple of values for the quasi-identifier columns.
    # @!attribute [rw] quasi_ids_values
    #   @return [Array<Google::Privacy::Dlp::V2::Value>]
    #     The quasi-identifier values.
    # @!attribute [rw] estimated_probability
    #   @return [Float]
    #     The estimated probability that a given individual sharing these
    #     quasi-identifier values is in the dataset. This value, typically called
    #     δ, is the ratio between the number of records in the dataset with these
    #     quasi-identifier values, and the total number of individuals (inside
    #     *and* outside the dataset) with these quasi-identifier values.
    #     For example, if there are 15 individuals in the dataset who share the
    #     same quasi-identifier values, and an estimated 100 people in the entire
    #     population with these values, then δ is 0.15.
    class DeltaPresenceEstimationQuasiIdValues; end

    # A DeltaPresenceEstimationHistogramBucket message with the following
    # values:
    #   min_probability: 0.1
    #   max_probability: 0.2
    #   frequency: 42
    # means that there are 42 records for which δ is in [0.1, 0.2). An
    # important particular case is when min_probability = max_probability = 1:
    # then, every individual who shares this quasi-identifier combination is in
    # the dataset.
    # @!attribute [rw] min_probability
    #   @return [Float]
    #     Between 0 and 1.
    # @!attribute [rw] max_probability
    #   @return [Float]
    #     Always greater than or equal to min_probability.
    # @!attribute [rw] bucket_size
    #   @return [Integer]
    #     Number of records within these probability bounds.
    # @!attribute [rw] bucket_values
    #   @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::DeltaPresenceEstimationResult::DeltaPresenceEstimationQuasiIdValues>]
    #     Sample of quasi-identifier tuple values in this bucket. The total
    #     number of classes returned per bucket is capped at 20.
    # @!attribute [rw] bucket_value_count
    #   @return [Integer]
    #     Total number of distinct quasi-identifier tuple values in this bucket.
    class DeltaPresenceEstimationHistogramBucket; end
  end
end

#requested_privacy_metricGoogle::Privacy::Dlp::V2::PrivacyMetric

Returns Privacy metric to compute.

Returns:



828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
# File 'lib/google/cloud/dlp/v2/doc/google/privacy/dlp/v2/dlp.rb', line 828

class AnalyzeDataSourceRiskDetails
  # Result of the numerical stats computation.
  # @!attribute [rw] min_value
  #   @return [Google::Privacy::Dlp::V2::Value]
  #     Minimum value appearing in the column.
  # @!attribute [rw] max_value
  #   @return [Google::Privacy::Dlp::V2::Value]
  #     Maximum value appearing in the column.
  # @!attribute [rw] quantile_values
  #   @return [Array<Google::Privacy::Dlp::V2::Value>]
  #     List of 99 values that partition the set of field values into 100 equal
  #     sized buckets.
  class NumericalStatsResult; end

  # Result of the categorical stats computation.
  # @!attribute [rw] value_frequency_histogram_buckets
  #   @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::CategoricalStatsResult::CategoricalStatsHistogramBucket>]
  #     Histogram of value frequencies in the column.
  class CategoricalStatsResult
    # @!attribute [rw] value_frequency_lower_bound
    #   @return [Integer]
    #     Lower bound on the value frequency of the values in this bucket.
    # @!attribute [rw] value_frequency_upper_bound
    #   @return [Integer]
    #     Upper bound on the value frequency of the values in this bucket.
    # @!attribute [rw] bucket_size
    #   @return [Integer]
    #     Total number of values in this bucket.
    # @!attribute [rw] bucket_values
    #   @return [Array<Google::Privacy::Dlp::V2::ValueFrequency>]
    #     Sample of value frequencies in this bucket. The total number of
    #     values returned per bucket is capped at 20.
    # @!attribute [rw] bucket_value_count
    #   @return [Integer]
    #     Total number of distinct values in this bucket.
    class CategoricalStatsHistogramBucket; end
  end

  # Result of the k-anonymity computation.
  # @!attribute [rw] equivalence_class_histogram_buckets
  #   @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::KAnonymityResult::KAnonymityHistogramBucket>]
  #     Histogram of k-anonymity equivalence classes.
  class KAnonymityResult
    # The set of columns' values that share the same ldiversity value
    # @!attribute [rw] quasi_ids_values
    #   @return [Array<Google::Privacy::Dlp::V2::Value>]
    #     Set of values defining the equivalence class. One value per
    #     quasi-identifier column in the original KAnonymity metric message.
    #     The order is always the same as the original request.
    # @!attribute [rw] equivalence_class_size
    #   @return [Integer]
    #     Size of the equivalence class, for example number of rows with the
    #     above set of values.
    class KAnonymityEquivalenceClass; end

    # @!attribute [rw] equivalence_class_size_lower_bound
    #   @return [Integer]
    #     Lower bound on the size of the equivalence classes in this bucket.
    # @!attribute [rw] equivalence_class_size_upper_bound
    #   @return [Integer]
    #     Upper bound on the size of the equivalence classes in this bucket.
    # @!attribute [rw] bucket_size
    #   @return [Integer]
    #     Total number of equivalence classes in this bucket.
    # @!attribute [rw] bucket_values
    #   @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::KAnonymityResult::KAnonymityEquivalenceClass>]
    #     Sample of equivalence classes in this bucket. The total number of
    #     classes returned per bucket is capped at 20.
    # @!attribute [rw] bucket_value_count
    #   @return [Integer]
    #     Total number of distinct equivalence classes in this bucket.
    class KAnonymityHistogramBucket; end
  end

  # Result of the l-diversity computation.
  # @!attribute [rw] sensitive_value_frequency_histogram_buckets
  #   @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::LDiversityResult::LDiversityHistogramBucket>]
  #     Histogram of l-diversity equivalence class sensitive value frequencies.
  class LDiversityResult
    # The set of columns' values that share the same ldiversity value.
    # @!attribute [rw] quasi_ids_values
    #   @return [Array<Google::Privacy::Dlp::V2::Value>]
    #     Quasi-identifier values defining the k-anonymity equivalence
    #     class. The order is always the same as the original request.
    # @!attribute [rw] equivalence_class_size
    #   @return [Integer]
    #     Size of the k-anonymity equivalence class.
    # @!attribute [rw] num_distinct_sensitive_values
    #   @return [Integer]
    #     Number of distinct sensitive values in this equivalence class.
    # @!attribute [rw] top_sensitive_values
    #   @return [Array<Google::Privacy::Dlp::V2::ValueFrequency>]
    #     Estimated frequencies of top sensitive values.
    class LDiversityEquivalenceClass; end

    # @!attribute [rw] sensitive_value_frequency_lower_bound
    #   @return [Integer]
    #     Lower bound on the sensitive value frequencies of the equivalence
    #     classes in this bucket.
    # @!attribute [rw] sensitive_value_frequency_upper_bound
    #   @return [Integer]
    #     Upper bound on the sensitive value frequencies of the equivalence
    #     classes in this bucket.
    # @!attribute [rw] bucket_size
    #   @return [Integer]
    #     Total number of equivalence classes in this bucket.
    # @!attribute [rw] bucket_values
    #   @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::LDiversityResult::LDiversityEquivalenceClass>]
    #     Sample of equivalence classes in this bucket. The total number of
    #     classes returned per bucket is capped at 20.
    # @!attribute [rw] bucket_value_count
    #   @return [Integer]
    #     Total number of distinct equivalence classes in this bucket.
    class LDiversityHistogramBucket; end
  end

  # Result of the reidentifiability analysis. Note that these results are an
  # estimation, not exact values.
  # @!attribute [rw] k_map_estimation_histogram
  #   @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::KMapEstimationResult::KMapEstimationHistogramBucket>]
  #     The intervals [min_anonymity, max_anonymity] do not overlap. If a value
  #     doesn't correspond to any such interval, the associated frequency is
  #     zero. For example, the following records:
  #       {min_anonymity: 1, max_anonymity: 1, frequency: 17}
  #       {min_anonymity: 2, max_anonymity: 3, frequency: 42}
  #       {min_anonymity: 5, max_anonymity: 10, frequency: 99}
  #     mean that there are no record with an estimated anonymity of 4, 5, or
  #     larger than 10.
  class KMapEstimationResult
    # A tuple of values for the quasi-identifier columns.
    # @!attribute [rw] quasi_ids_values
    #   @return [Array<Google::Privacy::Dlp::V2::Value>]
    #     The quasi-identifier values.
    # @!attribute [rw] estimated_anonymity
    #   @return [Integer]
    #     The estimated anonymity for these quasi-identifier values.
    class KMapEstimationQuasiIdValues; end

    # A KMapEstimationHistogramBucket message with the following values:
    #   min_anonymity: 3
    #   max_anonymity: 5
    #   frequency: 42
    # means that there are 42 records whose quasi-identifier values correspond
    # to 3, 4 or 5 people in the overlying population. An important particular
    # case is when min_anonymity = max_anonymity = 1: the frequency field then
    # corresponds to the number of uniquely identifiable records.
    # @!attribute [rw] min_anonymity
    #   @return [Integer]
    #     Always positive.
    # @!attribute [rw] max_anonymity
    #   @return [Integer]
    #     Always greater than or equal to min_anonymity.
    # @!attribute [rw] bucket_size
    #   @return [Integer]
    #     Number of records within these anonymity bounds.
    # @!attribute [rw] bucket_values
    #   @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::KMapEstimationResult::KMapEstimationQuasiIdValues>]
    #     Sample of quasi-identifier tuple values in this bucket. The total
    #     number of classes returned per bucket is capped at 20.
    # @!attribute [rw] bucket_value_count
    #   @return [Integer]
    #     Total number of distinct quasi-identifier tuple values in this bucket.
    class KMapEstimationHistogramBucket; end
  end

  # Result of the δ-presence computation. Note that these results are an
  # estimation, not exact values.
  # @!attribute [rw] delta_presence_estimation_histogram
  #   @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::DeltaPresenceEstimationResult::DeltaPresenceEstimationHistogramBucket>]
  #     The intervals [min_probability, max_probability) do not overlap. If a
  #     value doesn't correspond to any such interval, the associated frequency
  #     is zero. For example, the following records:
  #       {min_probability: 0, max_probability: 0.1, frequency: 17}
  #       {min_probability: 0.2, max_probability: 0.3, frequency: 42}
  #       {min_probability: 0.3, max_probability: 0.4, frequency: 99}
  #     mean that there are no record with an estimated probability in [0.1, 0.2)
  #     nor larger or equal to 0.4.
  class DeltaPresenceEstimationResult
    # A tuple of values for the quasi-identifier columns.
    # @!attribute [rw] quasi_ids_values
    #   @return [Array<Google::Privacy::Dlp::V2::Value>]
    #     The quasi-identifier values.
    # @!attribute [rw] estimated_probability
    #   @return [Float]
    #     The estimated probability that a given individual sharing these
    #     quasi-identifier values is in the dataset. This value, typically called
    #     δ, is the ratio between the number of records in the dataset with these
    #     quasi-identifier values, and the total number of individuals (inside
    #     *and* outside the dataset) with these quasi-identifier values.
    #     For example, if there are 15 individuals in the dataset who share the
    #     same quasi-identifier values, and an estimated 100 people in the entire
    #     population with these values, then δ is 0.15.
    class DeltaPresenceEstimationQuasiIdValues; end

    # A DeltaPresenceEstimationHistogramBucket message with the following
    # values:
    #   min_probability: 0.1
    #   max_probability: 0.2
    #   frequency: 42
    # means that there are 42 records for which δ is in [0.1, 0.2). An
    # important particular case is when min_probability = max_probability = 1:
    # then, every individual who shares this quasi-identifier combination is in
    # the dataset.
    # @!attribute [rw] min_probability
    #   @return [Float]
    #     Between 0 and 1.
    # @!attribute [rw] max_probability
    #   @return [Float]
    #     Always greater than or equal to min_probability.
    # @!attribute [rw] bucket_size
    #   @return [Integer]
    #     Number of records within these probability bounds.
    # @!attribute [rw] bucket_values
    #   @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::DeltaPresenceEstimationResult::DeltaPresenceEstimationQuasiIdValues>]
    #     Sample of quasi-identifier tuple values in this bucket. The total
    #     number of classes returned per bucket is capped at 20.
    # @!attribute [rw] bucket_value_count
    #   @return [Integer]
    #     Total number of distinct quasi-identifier tuple values in this bucket.
    class DeltaPresenceEstimationHistogramBucket; end
  end
end

#requested_source_tableGoogle::Privacy::Dlp::V2::BigQueryTable

Returns Input dataset to compute metrics over.

Returns:



828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
# File 'lib/google/cloud/dlp/v2/doc/google/privacy/dlp/v2/dlp.rb', line 828

class AnalyzeDataSourceRiskDetails
  # Result of the numerical stats computation.
  # @!attribute [rw] min_value
  #   @return [Google::Privacy::Dlp::V2::Value]
  #     Minimum value appearing in the column.
  # @!attribute [rw] max_value
  #   @return [Google::Privacy::Dlp::V2::Value]
  #     Maximum value appearing in the column.
  # @!attribute [rw] quantile_values
  #   @return [Array<Google::Privacy::Dlp::V2::Value>]
  #     List of 99 values that partition the set of field values into 100 equal
  #     sized buckets.
  class NumericalStatsResult; end

  # Result of the categorical stats computation.
  # @!attribute [rw] value_frequency_histogram_buckets
  #   @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::CategoricalStatsResult::CategoricalStatsHistogramBucket>]
  #     Histogram of value frequencies in the column.
  class CategoricalStatsResult
    # @!attribute [rw] value_frequency_lower_bound
    #   @return [Integer]
    #     Lower bound on the value frequency of the values in this bucket.
    # @!attribute [rw] value_frequency_upper_bound
    #   @return [Integer]
    #     Upper bound on the value frequency of the values in this bucket.
    # @!attribute [rw] bucket_size
    #   @return [Integer]
    #     Total number of values in this bucket.
    # @!attribute [rw] bucket_values
    #   @return [Array<Google::Privacy::Dlp::V2::ValueFrequency>]
    #     Sample of value frequencies in this bucket. The total number of
    #     values returned per bucket is capped at 20.
    # @!attribute [rw] bucket_value_count
    #   @return [Integer]
    #     Total number of distinct values in this bucket.
    class CategoricalStatsHistogramBucket; end
  end

  # Result of the k-anonymity computation.
  # @!attribute [rw] equivalence_class_histogram_buckets
  #   @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::KAnonymityResult::KAnonymityHistogramBucket>]
  #     Histogram of k-anonymity equivalence classes.
  class KAnonymityResult
    # The set of columns' values that share the same ldiversity value
    # @!attribute [rw] quasi_ids_values
    #   @return [Array<Google::Privacy::Dlp::V2::Value>]
    #     Set of values defining the equivalence class. One value per
    #     quasi-identifier column in the original KAnonymity metric message.
    #     The order is always the same as the original request.
    # @!attribute [rw] equivalence_class_size
    #   @return [Integer]
    #     Size of the equivalence class, for example number of rows with the
    #     above set of values.
    class KAnonymityEquivalenceClass; end

    # @!attribute [rw] equivalence_class_size_lower_bound
    #   @return [Integer]
    #     Lower bound on the size of the equivalence classes in this bucket.
    # @!attribute [rw] equivalence_class_size_upper_bound
    #   @return [Integer]
    #     Upper bound on the size of the equivalence classes in this bucket.
    # @!attribute [rw] bucket_size
    #   @return [Integer]
    #     Total number of equivalence classes in this bucket.
    # @!attribute [rw] bucket_values
    #   @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::KAnonymityResult::KAnonymityEquivalenceClass>]
    #     Sample of equivalence classes in this bucket. The total number of
    #     classes returned per bucket is capped at 20.
    # @!attribute [rw] bucket_value_count
    #   @return [Integer]
    #     Total number of distinct equivalence classes in this bucket.
    class KAnonymityHistogramBucket; end
  end

  # Result of the l-diversity computation.
  # @!attribute [rw] sensitive_value_frequency_histogram_buckets
  #   @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::LDiversityResult::LDiversityHistogramBucket>]
  #     Histogram of l-diversity equivalence class sensitive value frequencies.
  class LDiversityResult
    # The set of columns' values that share the same ldiversity value.
    # @!attribute [rw] quasi_ids_values
    #   @return [Array<Google::Privacy::Dlp::V2::Value>]
    #     Quasi-identifier values defining the k-anonymity equivalence
    #     class. The order is always the same as the original request.
    # @!attribute [rw] equivalence_class_size
    #   @return [Integer]
    #     Size of the k-anonymity equivalence class.
    # @!attribute [rw] num_distinct_sensitive_values
    #   @return [Integer]
    #     Number of distinct sensitive values in this equivalence class.
    # @!attribute [rw] top_sensitive_values
    #   @return [Array<Google::Privacy::Dlp::V2::ValueFrequency>]
    #     Estimated frequencies of top sensitive values.
    class LDiversityEquivalenceClass; end

    # @!attribute [rw] sensitive_value_frequency_lower_bound
    #   @return [Integer]
    #     Lower bound on the sensitive value frequencies of the equivalence
    #     classes in this bucket.
    # @!attribute [rw] sensitive_value_frequency_upper_bound
    #   @return [Integer]
    #     Upper bound on the sensitive value frequencies of the equivalence
    #     classes in this bucket.
    # @!attribute [rw] bucket_size
    #   @return [Integer]
    #     Total number of equivalence classes in this bucket.
    # @!attribute [rw] bucket_values
    #   @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::LDiversityResult::LDiversityEquivalenceClass>]
    #     Sample of equivalence classes in this bucket. The total number of
    #     classes returned per bucket is capped at 20.
    # @!attribute [rw] bucket_value_count
    #   @return [Integer]
    #     Total number of distinct equivalence classes in this bucket.
    class LDiversityHistogramBucket; end
  end

  # Result of the reidentifiability analysis. Note that these results are an
  # estimation, not exact values.
  # @!attribute [rw] k_map_estimation_histogram
  #   @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::KMapEstimationResult::KMapEstimationHistogramBucket>]
  #     The intervals [min_anonymity, max_anonymity] do not overlap. If a value
  #     doesn't correspond to any such interval, the associated frequency is
  #     zero. For example, the following records:
  #       {min_anonymity: 1, max_anonymity: 1, frequency: 17}
  #       {min_anonymity: 2, max_anonymity: 3, frequency: 42}
  #       {min_anonymity: 5, max_anonymity: 10, frequency: 99}
  #     mean that there are no record with an estimated anonymity of 4, 5, or
  #     larger than 10.
  class KMapEstimationResult
    # A tuple of values for the quasi-identifier columns.
    # @!attribute [rw] quasi_ids_values
    #   @return [Array<Google::Privacy::Dlp::V2::Value>]
    #     The quasi-identifier values.
    # @!attribute [rw] estimated_anonymity
    #   @return [Integer]
    #     The estimated anonymity for these quasi-identifier values.
    class KMapEstimationQuasiIdValues; end

    # A KMapEstimationHistogramBucket message with the following values:
    #   min_anonymity: 3
    #   max_anonymity: 5
    #   frequency: 42
    # means that there are 42 records whose quasi-identifier values correspond
    # to 3, 4 or 5 people in the overlying population. An important particular
    # case is when min_anonymity = max_anonymity = 1: the frequency field then
    # corresponds to the number of uniquely identifiable records.
    # @!attribute [rw] min_anonymity
    #   @return [Integer]
    #     Always positive.
    # @!attribute [rw] max_anonymity
    #   @return [Integer]
    #     Always greater than or equal to min_anonymity.
    # @!attribute [rw] bucket_size
    #   @return [Integer]
    #     Number of records within these anonymity bounds.
    # @!attribute [rw] bucket_values
    #   @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::KMapEstimationResult::KMapEstimationQuasiIdValues>]
    #     Sample of quasi-identifier tuple values in this bucket. The total
    #     number of classes returned per bucket is capped at 20.
    # @!attribute [rw] bucket_value_count
    #   @return [Integer]
    #     Total number of distinct quasi-identifier tuple values in this bucket.
    class KMapEstimationHistogramBucket; end
  end

  # Result of the δ-presence computation. Note that these results are an
  # estimation, not exact values.
  # @!attribute [rw] delta_presence_estimation_histogram
  #   @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::DeltaPresenceEstimationResult::DeltaPresenceEstimationHistogramBucket>]
  #     The intervals [min_probability, max_probability) do not overlap. If a
  #     value doesn't correspond to any such interval, the associated frequency
  #     is zero. For example, the following records:
  #       {min_probability: 0, max_probability: 0.1, frequency: 17}
  #       {min_probability: 0.2, max_probability: 0.3, frequency: 42}
  #       {min_probability: 0.3, max_probability: 0.4, frequency: 99}
  #     mean that there are no record with an estimated probability in [0.1, 0.2)
  #     nor larger or equal to 0.4.
  class DeltaPresenceEstimationResult
    # A tuple of values for the quasi-identifier columns.
    # @!attribute [rw] quasi_ids_values
    #   @return [Array<Google::Privacy::Dlp::V2::Value>]
    #     The quasi-identifier values.
    # @!attribute [rw] estimated_probability
    #   @return [Float]
    #     The estimated probability that a given individual sharing these
    #     quasi-identifier values is in the dataset. This value, typically called
    #     δ, is the ratio between the number of records in the dataset with these
    #     quasi-identifier values, and the total number of individuals (inside
    #     *and* outside the dataset) with these quasi-identifier values.
    #     For example, if there are 15 individuals in the dataset who share the
    #     same quasi-identifier values, and an estimated 100 people in the entire
    #     population with these values, then δ is 0.15.
    class DeltaPresenceEstimationQuasiIdValues; end

    # A DeltaPresenceEstimationHistogramBucket message with the following
    # values:
    #   min_probability: 0.1
    #   max_probability: 0.2
    #   frequency: 42
    # means that there are 42 records for which δ is in [0.1, 0.2). An
    # important particular case is when min_probability = max_probability = 1:
    # then, every individual who shares this quasi-identifier combination is in
    # the dataset.
    # @!attribute [rw] min_probability
    #   @return [Float]
    #     Between 0 and 1.
    # @!attribute [rw] max_probability
    #   @return [Float]
    #     Always greater than or equal to min_probability.
    # @!attribute [rw] bucket_size
    #   @return [Integer]
    #     Number of records within these probability bounds.
    # @!attribute [rw] bucket_values
    #   @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::DeltaPresenceEstimationResult::DeltaPresenceEstimationQuasiIdValues>]
    #     Sample of quasi-identifier tuple values in this bucket. The total
    #     number of classes returned per bucket is capped at 20.
    # @!attribute [rw] bucket_value_count
    #   @return [Integer]
    #     Total number of distinct quasi-identifier tuple values in this bucket.
    class DeltaPresenceEstimationHistogramBucket; end
  end
end