Class: Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails

Inherits:
Object
  • Object
show all
Defined in:
lib/google/cloud/dlp/v2/doc/google/privacy/dlp/v2/dlp.rb

Overview

Result of a risk analysis operation request.

Defined Under Namespace

Classes: CategoricalStatsResult, KAnonymityResult, KMapEstimationResult, LDiversityResult, NumericalStatsResult

Instance Attribute Summary collapse

Instance Attribute Details

#categorical_stats_resultGoogle::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::CategoricalStatsResult



706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
# File 'lib/google/cloud/dlp/v2/doc/google/privacy/dlp/v2/dlp.rb', line 706

class AnalyzeDataSourceRiskDetails
  # Result of the numerical stats computation.
  # @!attribute [rw] min_value
  #   @return [Google::Privacy::Dlp::V2::Value]
  #     Minimum value appearing in the column.
  # @!attribute [rw] max_value
  #   @return [Google::Privacy::Dlp::V2::Value]
  #     Maximum value appearing in the column.
  # @!attribute [rw] quantile_values
  #   @return [Array<Google::Privacy::Dlp::V2::Value>]
  #     List of 99 values that partition the set of field values into 100 equal
  #     sized buckets.
  class NumericalStatsResult; end

  # Result of the categorical stats computation.
  # @!attribute [rw] value_frequency_histogram_buckets
  #   @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::CategoricalStatsResult::CategoricalStatsHistogramBucket>]
  #     Histogram of value frequencies in the column.
  class CategoricalStatsResult
    # @!attribute [rw] value_frequency_lower_bound
    #   @return [Integer]
    #     Lower bound on the value frequency of the values in this bucket.
    # @!attribute [rw] value_frequency_upper_bound
    #   @return [Integer]
    #     Upper bound on the value frequency of the values in this bucket.
    # @!attribute [rw] bucket_size
    #   @return [Integer]
    #     Total number of values in this bucket.
    # @!attribute [rw] bucket_values
    #   @return [Array<Google::Privacy::Dlp::V2::ValueFrequency>]
    #     Sample of value frequencies in this bucket. The total number of
    #     values returned per bucket is capped at 20.
    class CategoricalStatsHistogramBucket; end
  end

  # Result of the k-anonymity computation.
  # @!attribute [rw] equivalence_class_histogram_buckets
  #   @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::KAnonymityResult::KAnonymityHistogramBucket>]
  #     Histogram of k-anonymity equivalence classes.
  class KAnonymityResult
    # The set of columns' values that share the same ldiversity value
    # @!attribute [rw] quasi_ids_values
    #   @return [Array<Google::Privacy::Dlp::V2::Value>]
    #     Set of values defining the equivalence class. One value per
    #     quasi-identifier column in the original KAnonymity metric message.
    #     The order is always the same as the original request.
    # @!attribute [rw] equivalence_class_size
    #   @return [Integer]
    #     Size of the equivalence class, for example number of rows with the
    #     above set of values.
    class KAnonymityEquivalenceClass; end

    # @!attribute [rw] equivalence_class_size_lower_bound
    #   @return [Integer]
    #     Lower bound on the size of the equivalence classes in this bucket.
    # @!attribute [rw] equivalence_class_size_upper_bound
    #   @return [Integer]
    #     Upper bound on the size of the equivalence classes in this bucket.
    # @!attribute [rw] bucket_size
    #   @return [Integer]
    #     Total number of equivalence classes in this bucket.
    # @!attribute [rw] bucket_values
    #   @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::KAnonymityResult::KAnonymityEquivalenceClass>]
    #     Sample of equivalence classes in this bucket. The total number of
    #     classes returned per bucket is capped at 20.
    class KAnonymityHistogramBucket; end
  end

  # Result of the l-diversity computation.
  # @!attribute [rw] sensitive_value_frequency_histogram_buckets
  #   @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::LDiversityResult::LDiversityHistogramBucket>]
  #     Histogram of l-diversity equivalence class sensitive value frequencies.
  class LDiversityResult
    # The set of columns' values that share the same ldiversity value.
    # @!attribute [rw] quasi_ids_values
    #   @return [Array<Google::Privacy::Dlp::V2::Value>]
    #     Quasi-identifier values defining the k-anonymity equivalence
    #     class. The order is always the same as the original request.
    # @!attribute [rw] equivalence_class_size
    #   @return [Integer]
    #     Size of the k-anonymity equivalence class.
    # @!attribute [rw] num_distinct_sensitive_values
    #   @return [Integer]
    #     Number of distinct sensitive values in this equivalence class.
    # @!attribute [rw] top_sensitive_values
    #   @return [Array<Google::Privacy::Dlp::V2::ValueFrequency>]
    #     Estimated frequencies of top sensitive values.
    class LDiversityEquivalenceClass; end

    # @!attribute [rw] sensitive_value_frequency_lower_bound
    #   @return [Integer]
    #     Lower bound on the sensitive value frequencies of the equivalence
    #     classes in this bucket.
    # @!attribute [rw] sensitive_value_frequency_upper_bound
    #   @return [Integer]
    #     Upper bound on the sensitive value frequencies of the equivalence
    #     classes in this bucket.
    # @!attribute [rw] bucket_size
    #   @return [Integer]
    #     Total number of equivalence classes in this bucket.
    # @!attribute [rw] bucket_values
    #   @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::LDiversityResult::LDiversityEquivalenceClass>]
    #     Sample of equivalence classes in this bucket. The total number of
    #     classes returned per bucket is capped at 20.
    class LDiversityHistogramBucket; end
  end

  # Result of the reidentifiability analysis. Note that these results are an
  # estimation, not exact values.
  # @!attribute [rw] k_map_estimation_histogram
  #   @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::KMapEstimationResult::KMapEstimationHistogramBucket>]
  #     The intervals [min_anonymity, max_anonymity] do not overlap. If a value
  #     doesn't correspond to any such interval, the associated frequency is
  #     zero. For example, the following records:
  #       {min_anonymity: 1, max_anonymity: 1, frequency: 17}
  #       {min_anonymity: 2, max_anonymity: 3, frequency: 42}
  #       {min_anonymity: 5, max_anonymity: 10, frequency: 99}
  #     mean that there are no record with an estimated anonymity of 4, 5, or
  #     larger than 10.
  class KMapEstimationResult
    # A tuple of values for the quasi-identifier columns.
    # @!attribute [rw] quasi_ids_values
    #   @return [Array<Google::Privacy::Dlp::V2::Value>]
    #     The quasi-identifier values.
    # @!attribute [rw] estimated_anonymity
    #   @return [Integer]
    #     The estimated anonymity for these quasi-identifier values.
    class KMapEstimationQuasiIdValues; end

    # A KMapEstimationHistogramBucket message with the following values:
    #   min_anonymity: 3
    #   max_anonymity: 5
    #   frequency: 42
    # means that there are 42 records whose quasi-identifier values correspond
    # to 3, 4 or 5 people in the overlying population. An important particular
    # case is when min_anonymity = max_anonymity = 1: the frequency field then
    # corresponds to the number of uniquely identifiable records.
    # @!attribute [rw] min_anonymity
    #   @return [Integer]
    #     Always positive.
    # @!attribute [rw] max_anonymity
    #   @return [Integer]
    #     Always greater than or equal to min_anonymity.
    # @!attribute [rw] bucket_size
    #   @return [Integer]
    #     Number of records within these anonymity bounds.
    # @!attribute [rw] bucket_values
    #   @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::KMapEstimationResult::KMapEstimationQuasiIdValues>]
    #     Sample of quasi-identifier tuple values in this bucket. The total
    #     number of classes returned per bucket is capped at 20.
    class KMapEstimationHistogramBucket; end
  end
end

#k_anonymity_resultGoogle::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::KAnonymityResult



706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
# File 'lib/google/cloud/dlp/v2/doc/google/privacy/dlp/v2/dlp.rb', line 706

class AnalyzeDataSourceRiskDetails
  # Result of the numerical stats computation.
  # @!attribute [rw] min_value
  #   @return [Google::Privacy::Dlp::V2::Value]
  #     Minimum value appearing in the column.
  # @!attribute [rw] max_value
  #   @return [Google::Privacy::Dlp::V2::Value]
  #     Maximum value appearing in the column.
  # @!attribute [rw] quantile_values
  #   @return [Array<Google::Privacy::Dlp::V2::Value>]
  #     List of 99 values that partition the set of field values into 100 equal
  #     sized buckets.
  class NumericalStatsResult; end

  # Result of the categorical stats computation.
  # @!attribute [rw] value_frequency_histogram_buckets
  #   @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::CategoricalStatsResult::CategoricalStatsHistogramBucket>]
  #     Histogram of value frequencies in the column.
  class CategoricalStatsResult
    # @!attribute [rw] value_frequency_lower_bound
    #   @return [Integer]
    #     Lower bound on the value frequency of the values in this bucket.
    # @!attribute [rw] value_frequency_upper_bound
    #   @return [Integer]
    #     Upper bound on the value frequency of the values in this bucket.
    # @!attribute [rw] bucket_size
    #   @return [Integer]
    #     Total number of values in this bucket.
    # @!attribute [rw] bucket_values
    #   @return [Array<Google::Privacy::Dlp::V2::ValueFrequency>]
    #     Sample of value frequencies in this bucket. The total number of
    #     values returned per bucket is capped at 20.
    class CategoricalStatsHistogramBucket; end
  end

  # Result of the k-anonymity computation.
  # @!attribute [rw] equivalence_class_histogram_buckets
  #   @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::KAnonymityResult::KAnonymityHistogramBucket>]
  #     Histogram of k-anonymity equivalence classes.
  class KAnonymityResult
    # The set of columns' values that share the same ldiversity value
    # @!attribute [rw] quasi_ids_values
    #   @return [Array<Google::Privacy::Dlp::V2::Value>]
    #     Set of values defining the equivalence class. One value per
    #     quasi-identifier column in the original KAnonymity metric message.
    #     The order is always the same as the original request.
    # @!attribute [rw] equivalence_class_size
    #   @return [Integer]
    #     Size of the equivalence class, for example number of rows with the
    #     above set of values.
    class KAnonymityEquivalenceClass; end

    # @!attribute [rw] equivalence_class_size_lower_bound
    #   @return [Integer]
    #     Lower bound on the size of the equivalence classes in this bucket.
    # @!attribute [rw] equivalence_class_size_upper_bound
    #   @return [Integer]
    #     Upper bound on the size of the equivalence classes in this bucket.
    # @!attribute [rw] bucket_size
    #   @return [Integer]
    #     Total number of equivalence classes in this bucket.
    # @!attribute [rw] bucket_values
    #   @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::KAnonymityResult::KAnonymityEquivalenceClass>]
    #     Sample of equivalence classes in this bucket. The total number of
    #     classes returned per bucket is capped at 20.
    class KAnonymityHistogramBucket; end
  end

  # Result of the l-diversity computation.
  # @!attribute [rw] sensitive_value_frequency_histogram_buckets
  #   @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::LDiversityResult::LDiversityHistogramBucket>]
  #     Histogram of l-diversity equivalence class sensitive value frequencies.
  class LDiversityResult
    # The set of columns' values that share the same ldiversity value.
    # @!attribute [rw] quasi_ids_values
    #   @return [Array<Google::Privacy::Dlp::V2::Value>]
    #     Quasi-identifier values defining the k-anonymity equivalence
    #     class. The order is always the same as the original request.
    # @!attribute [rw] equivalence_class_size
    #   @return [Integer]
    #     Size of the k-anonymity equivalence class.
    # @!attribute [rw] num_distinct_sensitive_values
    #   @return [Integer]
    #     Number of distinct sensitive values in this equivalence class.
    # @!attribute [rw] top_sensitive_values
    #   @return [Array<Google::Privacy::Dlp::V2::ValueFrequency>]
    #     Estimated frequencies of top sensitive values.
    class LDiversityEquivalenceClass; end

    # @!attribute [rw] sensitive_value_frequency_lower_bound
    #   @return [Integer]
    #     Lower bound on the sensitive value frequencies of the equivalence
    #     classes in this bucket.
    # @!attribute [rw] sensitive_value_frequency_upper_bound
    #   @return [Integer]
    #     Upper bound on the sensitive value frequencies of the equivalence
    #     classes in this bucket.
    # @!attribute [rw] bucket_size
    #   @return [Integer]
    #     Total number of equivalence classes in this bucket.
    # @!attribute [rw] bucket_values
    #   @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::LDiversityResult::LDiversityEquivalenceClass>]
    #     Sample of equivalence classes in this bucket. The total number of
    #     classes returned per bucket is capped at 20.
    class LDiversityHistogramBucket; end
  end

  # Result of the reidentifiability analysis. Note that these results are an
  # estimation, not exact values.
  # @!attribute [rw] k_map_estimation_histogram
  #   @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::KMapEstimationResult::KMapEstimationHistogramBucket>]
  #     The intervals [min_anonymity, max_anonymity] do not overlap. If a value
  #     doesn't correspond to any such interval, the associated frequency is
  #     zero. For example, the following records:
  #       {min_anonymity: 1, max_anonymity: 1, frequency: 17}
  #       {min_anonymity: 2, max_anonymity: 3, frequency: 42}
  #       {min_anonymity: 5, max_anonymity: 10, frequency: 99}
  #     mean that there are no record with an estimated anonymity of 4, 5, or
  #     larger than 10.
  class KMapEstimationResult
    # A tuple of values for the quasi-identifier columns.
    # @!attribute [rw] quasi_ids_values
    #   @return [Array<Google::Privacy::Dlp::V2::Value>]
    #     The quasi-identifier values.
    # @!attribute [rw] estimated_anonymity
    #   @return [Integer]
    #     The estimated anonymity for these quasi-identifier values.
    class KMapEstimationQuasiIdValues; end

    # A KMapEstimationHistogramBucket message with the following values:
    #   min_anonymity: 3
    #   max_anonymity: 5
    #   frequency: 42
    # means that there are 42 records whose quasi-identifier values correspond
    # to 3, 4 or 5 people in the overlying population. An important particular
    # case is when min_anonymity = max_anonymity = 1: the frequency field then
    # corresponds to the number of uniquely identifiable records.
    # @!attribute [rw] min_anonymity
    #   @return [Integer]
    #     Always positive.
    # @!attribute [rw] max_anonymity
    #   @return [Integer]
    #     Always greater than or equal to min_anonymity.
    # @!attribute [rw] bucket_size
    #   @return [Integer]
    #     Number of records within these anonymity bounds.
    # @!attribute [rw] bucket_values
    #   @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::KMapEstimationResult::KMapEstimationQuasiIdValues>]
    #     Sample of quasi-identifier tuple values in this bucket. The total
    #     number of classes returned per bucket is capped at 20.
    class KMapEstimationHistogramBucket; end
  end
end

#k_map_estimation_resultGoogle::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::KMapEstimationResult



706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
# File 'lib/google/cloud/dlp/v2/doc/google/privacy/dlp/v2/dlp.rb', line 706

class AnalyzeDataSourceRiskDetails
  # Result of the numerical stats computation.
  # @!attribute [rw] min_value
  #   @return [Google::Privacy::Dlp::V2::Value]
  #     Minimum value appearing in the column.
  # @!attribute [rw] max_value
  #   @return [Google::Privacy::Dlp::V2::Value]
  #     Maximum value appearing in the column.
  # @!attribute [rw] quantile_values
  #   @return [Array<Google::Privacy::Dlp::V2::Value>]
  #     List of 99 values that partition the set of field values into 100 equal
  #     sized buckets.
  class NumericalStatsResult; end

  # Result of the categorical stats computation.
  # @!attribute [rw] value_frequency_histogram_buckets
  #   @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::CategoricalStatsResult::CategoricalStatsHistogramBucket>]
  #     Histogram of value frequencies in the column.
  class CategoricalStatsResult
    # @!attribute [rw] value_frequency_lower_bound
    #   @return [Integer]
    #     Lower bound on the value frequency of the values in this bucket.
    # @!attribute [rw] value_frequency_upper_bound
    #   @return [Integer]
    #     Upper bound on the value frequency of the values in this bucket.
    # @!attribute [rw] bucket_size
    #   @return [Integer]
    #     Total number of values in this bucket.
    # @!attribute [rw] bucket_values
    #   @return [Array<Google::Privacy::Dlp::V2::ValueFrequency>]
    #     Sample of value frequencies in this bucket. The total number of
    #     values returned per bucket is capped at 20.
    class CategoricalStatsHistogramBucket; end
  end

  # Result of the k-anonymity computation.
  # @!attribute [rw] equivalence_class_histogram_buckets
  #   @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::KAnonymityResult::KAnonymityHistogramBucket>]
  #     Histogram of k-anonymity equivalence classes.
  class KAnonymityResult
    # The set of columns' values that share the same ldiversity value
    # @!attribute [rw] quasi_ids_values
    #   @return [Array<Google::Privacy::Dlp::V2::Value>]
    #     Set of values defining the equivalence class. One value per
    #     quasi-identifier column in the original KAnonymity metric message.
    #     The order is always the same as the original request.
    # @!attribute [rw] equivalence_class_size
    #   @return [Integer]
    #     Size of the equivalence class, for example number of rows with the
    #     above set of values.
    class KAnonymityEquivalenceClass; end

    # @!attribute [rw] equivalence_class_size_lower_bound
    #   @return [Integer]
    #     Lower bound on the size of the equivalence classes in this bucket.
    # @!attribute [rw] equivalence_class_size_upper_bound
    #   @return [Integer]
    #     Upper bound on the size of the equivalence classes in this bucket.
    # @!attribute [rw] bucket_size
    #   @return [Integer]
    #     Total number of equivalence classes in this bucket.
    # @!attribute [rw] bucket_values
    #   @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::KAnonymityResult::KAnonymityEquivalenceClass>]
    #     Sample of equivalence classes in this bucket. The total number of
    #     classes returned per bucket is capped at 20.
    class KAnonymityHistogramBucket; end
  end

  # Result of the l-diversity computation.
  # @!attribute [rw] sensitive_value_frequency_histogram_buckets
  #   @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::LDiversityResult::LDiversityHistogramBucket>]
  #     Histogram of l-diversity equivalence class sensitive value frequencies.
  class LDiversityResult
    # The set of columns' values that share the same ldiversity value.
    # @!attribute [rw] quasi_ids_values
    #   @return [Array<Google::Privacy::Dlp::V2::Value>]
    #     Quasi-identifier values defining the k-anonymity equivalence
    #     class. The order is always the same as the original request.
    # @!attribute [rw] equivalence_class_size
    #   @return [Integer]
    #     Size of the k-anonymity equivalence class.
    # @!attribute [rw] num_distinct_sensitive_values
    #   @return [Integer]
    #     Number of distinct sensitive values in this equivalence class.
    # @!attribute [rw] top_sensitive_values
    #   @return [Array<Google::Privacy::Dlp::V2::ValueFrequency>]
    #     Estimated frequencies of top sensitive values.
    class LDiversityEquivalenceClass; end

    # @!attribute [rw] sensitive_value_frequency_lower_bound
    #   @return [Integer]
    #     Lower bound on the sensitive value frequencies of the equivalence
    #     classes in this bucket.
    # @!attribute [rw] sensitive_value_frequency_upper_bound
    #   @return [Integer]
    #     Upper bound on the sensitive value frequencies of the equivalence
    #     classes in this bucket.
    # @!attribute [rw] bucket_size
    #   @return [Integer]
    #     Total number of equivalence classes in this bucket.
    # @!attribute [rw] bucket_values
    #   @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::LDiversityResult::LDiversityEquivalenceClass>]
    #     Sample of equivalence classes in this bucket. The total number of
    #     classes returned per bucket is capped at 20.
    class LDiversityHistogramBucket; end
  end

  # Result of the reidentifiability analysis. Note that these results are an
  # estimation, not exact values.
  # @!attribute [rw] k_map_estimation_histogram
  #   @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::KMapEstimationResult::KMapEstimationHistogramBucket>]
  #     The intervals [min_anonymity, max_anonymity] do not overlap. If a value
  #     doesn't correspond to any such interval, the associated frequency is
  #     zero. For example, the following records:
  #       {min_anonymity: 1, max_anonymity: 1, frequency: 17}
  #       {min_anonymity: 2, max_anonymity: 3, frequency: 42}
  #       {min_anonymity: 5, max_anonymity: 10, frequency: 99}
  #     mean that there are no record with an estimated anonymity of 4, 5, or
  #     larger than 10.
  class KMapEstimationResult
    # A tuple of values for the quasi-identifier columns.
    # @!attribute [rw] quasi_ids_values
    #   @return [Array<Google::Privacy::Dlp::V2::Value>]
    #     The quasi-identifier values.
    # @!attribute [rw] estimated_anonymity
    #   @return [Integer]
    #     The estimated anonymity for these quasi-identifier values.
    class KMapEstimationQuasiIdValues; end

    # A KMapEstimationHistogramBucket message with the following values:
    #   min_anonymity: 3
    #   max_anonymity: 5
    #   frequency: 42
    # means that there are 42 records whose quasi-identifier values correspond
    # to 3, 4 or 5 people in the overlying population. An important particular
    # case is when min_anonymity = max_anonymity = 1: the frequency field then
    # corresponds to the number of uniquely identifiable records.
    # @!attribute [rw] min_anonymity
    #   @return [Integer]
    #     Always positive.
    # @!attribute [rw] max_anonymity
    #   @return [Integer]
    #     Always greater than or equal to min_anonymity.
    # @!attribute [rw] bucket_size
    #   @return [Integer]
    #     Number of records within these anonymity bounds.
    # @!attribute [rw] bucket_values
    #   @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::KMapEstimationResult::KMapEstimationQuasiIdValues>]
    #     Sample of quasi-identifier tuple values in this bucket. The total
    #     number of classes returned per bucket is capped at 20.
    class KMapEstimationHistogramBucket; end
  end
end

#l_diversity_resultGoogle::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::LDiversityResult



706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
# File 'lib/google/cloud/dlp/v2/doc/google/privacy/dlp/v2/dlp.rb', line 706

class AnalyzeDataSourceRiskDetails
  # Result of the numerical stats computation.
  # @!attribute [rw] min_value
  #   @return [Google::Privacy::Dlp::V2::Value]
  #     Minimum value appearing in the column.
  # @!attribute [rw] max_value
  #   @return [Google::Privacy::Dlp::V2::Value]
  #     Maximum value appearing in the column.
  # @!attribute [rw] quantile_values
  #   @return [Array<Google::Privacy::Dlp::V2::Value>]
  #     List of 99 values that partition the set of field values into 100 equal
  #     sized buckets.
  class NumericalStatsResult; end

  # Result of the categorical stats computation.
  # @!attribute [rw] value_frequency_histogram_buckets
  #   @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::CategoricalStatsResult::CategoricalStatsHistogramBucket>]
  #     Histogram of value frequencies in the column.
  class CategoricalStatsResult
    # @!attribute [rw] value_frequency_lower_bound
    #   @return [Integer]
    #     Lower bound on the value frequency of the values in this bucket.
    # @!attribute [rw] value_frequency_upper_bound
    #   @return [Integer]
    #     Upper bound on the value frequency of the values in this bucket.
    # @!attribute [rw] bucket_size
    #   @return [Integer]
    #     Total number of values in this bucket.
    # @!attribute [rw] bucket_values
    #   @return [Array<Google::Privacy::Dlp::V2::ValueFrequency>]
    #     Sample of value frequencies in this bucket. The total number of
    #     values returned per bucket is capped at 20.
    class CategoricalStatsHistogramBucket; end
  end

  # Result of the k-anonymity computation.
  # @!attribute [rw] equivalence_class_histogram_buckets
  #   @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::KAnonymityResult::KAnonymityHistogramBucket>]
  #     Histogram of k-anonymity equivalence classes.
  class KAnonymityResult
    # The set of columns' values that share the same ldiversity value
    # @!attribute [rw] quasi_ids_values
    #   @return [Array<Google::Privacy::Dlp::V2::Value>]
    #     Set of values defining the equivalence class. One value per
    #     quasi-identifier column in the original KAnonymity metric message.
    #     The order is always the same as the original request.
    # @!attribute [rw] equivalence_class_size
    #   @return [Integer]
    #     Size of the equivalence class, for example number of rows with the
    #     above set of values.
    class KAnonymityEquivalenceClass; end

    # @!attribute [rw] equivalence_class_size_lower_bound
    #   @return [Integer]
    #     Lower bound on the size of the equivalence classes in this bucket.
    # @!attribute [rw] equivalence_class_size_upper_bound
    #   @return [Integer]
    #     Upper bound on the size of the equivalence classes in this bucket.
    # @!attribute [rw] bucket_size
    #   @return [Integer]
    #     Total number of equivalence classes in this bucket.
    # @!attribute [rw] bucket_values
    #   @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::KAnonymityResult::KAnonymityEquivalenceClass>]
    #     Sample of equivalence classes in this bucket. The total number of
    #     classes returned per bucket is capped at 20.
    class KAnonymityHistogramBucket; end
  end

  # Result of the l-diversity computation.
  # @!attribute [rw] sensitive_value_frequency_histogram_buckets
  #   @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::LDiversityResult::LDiversityHistogramBucket>]
  #     Histogram of l-diversity equivalence class sensitive value frequencies.
  class LDiversityResult
    # The set of columns' values that share the same ldiversity value.
    # @!attribute [rw] quasi_ids_values
    #   @return [Array<Google::Privacy::Dlp::V2::Value>]
    #     Quasi-identifier values defining the k-anonymity equivalence
    #     class. The order is always the same as the original request.
    # @!attribute [rw] equivalence_class_size
    #   @return [Integer]
    #     Size of the k-anonymity equivalence class.
    # @!attribute [rw] num_distinct_sensitive_values
    #   @return [Integer]
    #     Number of distinct sensitive values in this equivalence class.
    # @!attribute [rw] top_sensitive_values
    #   @return [Array<Google::Privacy::Dlp::V2::ValueFrequency>]
    #     Estimated frequencies of top sensitive values.
    class LDiversityEquivalenceClass; end

    # @!attribute [rw] sensitive_value_frequency_lower_bound
    #   @return [Integer]
    #     Lower bound on the sensitive value frequencies of the equivalence
    #     classes in this bucket.
    # @!attribute [rw] sensitive_value_frequency_upper_bound
    #   @return [Integer]
    #     Upper bound on the sensitive value frequencies of the equivalence
    #     classes in this bucket.
    # @!attribute [rw] bucket_size
    #   @return [Integer]
    #     Total number of equivalence classes in this bucket.
    # @!attribute [rw] bucket_values
    #   @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::LDiversityResult::LDiversityEquivalenceClass>]
    #     Sample of equivalence classes in this bucket. The total number of
    #     classes returned per bucket is capped at 20.
    class LDiversityHistogramBucket; end
  end

  # Result of the reidentifiability analysis. Note that these results are an
  # estimation, not exact values.
  # @!attribute [rw] k_map_estimation_histogram
  #   @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::KMapEstimationResult::KMapEstimationHistogramBucket>]
  #     The intervals [min_anonymity, max_anonymity] do not overlap. If a value
  #     doesn't correspond to any such interval, the associated frequency is
  #     zero. For example, the following records:
  #       {min_anonymity: 1, max_anonymity: 1, frequency: 17}
  #       {min_anonymity: 2, max_anonymity: 3, frequency: 42}
  #       {min_anonymity: 5, max_anonymity: 10, frequency: 99}
  #     mean that there are no record with an estimated anonymity of 4, 5, or
  #     larger than 10.
  class KMapEstimationResult
    # A tuple of values for the quasi-identifier columns.
    # @!attribute [rw] quasi_ids_values
    #   @return [Array<Google::Privacy::Dlp::V2::Value>]
    #     The quasi-identifier values.
    # @!attribute [rw] estimated_anonymity
    #   @return [Integer]
    #     The estimated anonymity for these quasi-identifier values.
    class KMapEstimationQuasiIdValues; end

    # A KMapEstimationHistogramBucket message with the following values:
    #   min_anonymity: 3
    #   max_anonymity: 5
    #   frequency: 42
    # means that there are 42 records whose quasi-identifier values correspond
    # to 3, 4 or 5 people in the overlying population. An important particular
    # case is when min_anonymity = max_anonymity = 1: the frequency field then
    # corresponds to the number of uniquely identifiable records.
    # @!attribute [rw] min_anonymity
    #   @return [Integer]
    #     Always positive.
    # @!attribute [rw] max_anonymity
    #   @return [Integer]
    #     Always greater than or equal to min_anonymity.
    # @!attribute [rw] bucket_size
    #   @return [Integer]
    #     Number of records within these anonymity bounds.
    # @!attribute [rw] bucket_values
    #   @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::KMapEstimationResult::KMapEstimationQuasiIdValues>]
    #     Sample of quasi-identifier tuple values in this bucket. The total
    #     number of classes returned per bucket is capped at 20.
    class KMapEstimationHistogramBucket; end
  end
end

#numerical_stats_resultGoogle::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::NumericalStatsResult



706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
# File 'lib/google/cloud/dlp/v2/doc/google/privacy/dlp/v2/dlp.rb', line 706

class AnalyzeDataSourceRiskDetails
  # Result of the numerical stats computation.
  # @!attribute [rw] min_value
  #   @return [Google::Privacy::Dlp::V2::Value]
  #     Minimum value appearing in the column.
  # @!attribute [rw] max_value
  #   @return [Google::Privacy::Dlp::V2::Value]
  #     Maximum value appearing in the column.
  # @!attribute [rw] quantile_values
  #   @return [Array<Google::Privacy::Dlp::V2::Value>]
  #     List of 99 values that partition the set of field values into 100 equal
  #     sized buckets.
  class NumericalStatsResult; end

  # Result of the categorical stats computation.
  # @!attribute [rw] value_frequency_histogram_buckets
  #   @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::CategoricalStatsResult::CategoricalStatsHistogramBucket>]
  #     Histogram of value frequencies in the column.
  class CategoricalStatsResult
    # @!attribute [rw] value_frequency_lower_bound
    #   @return [Integer]
    #     Lower bound on the value frequency of the values in this bucket.
    # @!attribute [rw] value_frequency_upper_bound
    #   @return [Integer]
    #     Upper bound on the value frequency of the values in this bucket.
    # @!attribute [rw] bucket_size
    #   @return [Integer]
    #     Total number of values in this bucket.
    # @!attribute [rw] bucket_values
    #   @return [Array<Google::Privacy::Dlp::V2::ValueFrequency>]
    #     Sample of value frequencies in this bucket. The total number of
    #     values returned per bucket is capped at 20.
    class CategoricalStatsHistogramBucket; end
  end

  # Result of the k-anonymity computation.
  # @!attribute [rw] equivalence_class_histogram_buckets
  #   @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::KAnonymityResult::KAnonymityHistogramBucket>]
  #     Histogram of k-anonymity equivalence classes.
  class KAnonymityResult
    # The set of columns' values that share the same ldiversity value
    # @!attribute [rw] quasi_ids_values
    #   @return [Array<Google::Privacy::Dlp::V2::Value>]
    #     Set of values defining the equivalence class. One value per
    #     quasi-identifier column in the original KAnonymity metric message.
    #     The order is always the same as the original request.
    # @!attribute [rw] equivalence_class_size
    #   @return [Integer]
    #     Size of the equivalence class, for example number of rows with the
    #     above set of values.
    class KAnonymityEquivalenceClass; end

    # @!attribute [rw] equivalence_class_size_lower_bound
    #   @return [Integer]
    #     Lower bound on the size of the equivalence classes in this bucket.
    # @!attribute [rw] equivalence_class_size_upper_bound
    #   @return [Integer]
    #     Upper bound on the size of the equivalence classes in this bucket.
    # @!attribute [rw] bucket_size
    #   @return [Integer]
    #     Total number of equivalence classes in this bucket.
    # @!attribute [rw] bucket_values
    #   @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::KAnonymityResult::KAnonymityEquivalenceClass>]
    #     Sample of equivalence classes in this bucket. The total number of
    #     classes returned per bucket is capped at 20.
    class KAnonymityHistogramBucket; end
  end

  # Result of the l-diversity computation.
  # @!attribute [rw] sensitive_value_frequency_histogram_buckets
  #   @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::LDiversityResult::LDiversityHistogramBucket>]
  #     Histogram of l-diversity equivalence class sensitive value frequencies.
  class LDiversityResult
    # The set of columns' values that share the same ldiversity value.
    # @!attribute [rw] quasi_ids_values
    #   @return [Array<Google::Privacy::Dlp::V2::Value>]
    #     Quasi-identifier values defining the k-anonymity equivalence
    #     class. The order is always the same as the original request.
    # @!attribute [rw] equivalence_class_size
    #   @return [Integer]
    #     Size of the k-anonymity equivalence class.
    # @!attribute [rw] num_distinct_sensitive_values
    #   @return [Integer]
    #     Number of distinct sensitive values in this equivalence class.
    # @!attribute [rw] top_sensitive_values
    #   @return [Array<Google::Privacy::Dlp::V2::ValueFrequency>]
    #     Estimated frequencies of top sensitive values.
    class LDiversityEquivalenceClass; end

    # @!attribute [rw] sensitive_value_frequency_lower_bound
    #   @return [Integer]
    #     Lower bound on the sensitive value frequencies of the equivalence
    #     classes in this bucket.
    # @!attribute [rw] sensitive_value_frequency_upper_bound
    #   @return [Integer]
    #     Upper bound on the sensitive value frequencies of the equivalence
    #     classes in this bucket.
    # @!attribute [rw] bucket_size
    #   @return [Integer]
    #     Total number of equivalence classes in this bucket.
    # @!attribute [rw] bucket_values
    #   @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::LDiversityResult::LDiversityEquivalenceClass>]
    #     Sample of equivalence classes in this bucket. The total number of
    #     classes returned per bucket is capped at 20.
    class LDiversityHistogramBucket; end
  end

  # Result of the reidentifiability analysis. Note that these results are an
  # estimation, not exact values.
  # @!attribute [rw] k_map_estimation_histogram
  #   @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::KMapEstimationResult::KMapEstimationHistogramBucket>]
  #     The intervals [min_anonymity, max_anonymity] do not overlap. If a value
  #     doesn't correspond to any such interval, the associated frequency is
  #     zero. For example, the following records:
  #       {min_anonymity: 1, max_anonymity: 1, frequency: 17}
  #       {min_anonymity: 2, max_anonymity: 3, frequency: 42}
  #       {min_anonymity: 5, max_anonymity: 10, frequency: 99}
  #     mean that there are no record with an estimated anonymity of 4, 5, or
  #     larger than 10.
  class KMapEstimationResult
    # A tuple of values for the quasi-identifier columns.
    # @!attribute [rw] quasi_ids_values
    #   @return [Array<Google::Privacy::Dlp::V2::Value>]
    #     The quasi-identifier values.
    # @!attribute [rw] estimated_anonymity
    #   @return [Integer]
    #     The estimated anonymity for these quasi-identifier values.
    class KMapEstimationQuasiIdValues; end

    # A KMapEstimationHistogramBucket message with the following values:
    #   min_anonymity: 3
    #   max_anonymity: 5
    #   frequency: 42
    # means that there are 42 records whose quasi-identifier values correspond
    # to 3, 4 or 5 people in the overlying population. An important particular
    # case is when min_anonymity = max_anonymity = 1: the frequency field then
    # corresponds to the number of uniquely identifiable records.
    # @!attribute [rw] min_anonymity
    #   @return [Integer]
    #     Always positive.
    # @!attribute [rw] max_anonymity
    #   @return [Integer]
    #     Always greater than or equal to min_anonymity.
    # @!attribute [rw] bucket_size
    #   @return [Integer]
    #     Number of records within these anonymity bounds.
    # @!attribute [rw] bucket_values
    #   @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::KMapEstimationResult::KMapEstimationQuasiIdValues>]
    #     Sample of quasi-identifier tuple values in this bucket. The total
    #     number of classes returned per bucket is capped at 20.
    class KMapEstimationHistogramBucket; end
  end
end

#requested_privacy_metricGoogle::Privacy::Dlp::V2::PrivacyMetric

Returns Privacy metric to compute.

Returns:



706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
# File 'lib/google/cloud/dlp/v2/doc/google/privacy/dlp/v2/dlp.rb', line 706

class AnalyzeDataSourceRiskDetails
  # Result of the numerical stats computation.
  # @!attribute [rw] min_value
  #   @return [Google::Privacy::Dlp::V2::Value]
  #     Minimum value appearing in the column.
  # @!attribute [rw] max_value
  #   @return [Google::Privacy::Dlp::V2::Value]
  #     Maximum value appearing in the column.
  # @!attribute [rw] quantile_values
  #   @return [Array<Google::Privacy::Dlp::V2::Value>]
  #     List of 99 values that partition the set of field values into 100 equal
  #     sized buckets.
  class NumericalStatsResult; end

  # Result of the categorical stats computation.
  # @!attribute [rw] value_frequency_histogram_buckets
  #   @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::CategoricalStatsResult::CategoricalStatsHistogramBucket>]
  #     Histogram of value frequencies in the column.
  class CategoricalStatsResult
    # @!attribute [rw] value_frequency_lower_bound
    #   @return [Integer]
    #     Lower bound on the value frequency of the values in this bucket.
    # @!attribute [rw] value_frequency_upper_bound
    #   @return [Integer]
    #     Upper bound on the value frequency of the values in this bucket.
    # @!attribute [rw] bucket_size
    #   @return [Integer]
    #     Total number of values in this bucket.
    # @!attribute [rw] bucket_values
    #   @return [Array<Google::Privacy::Dlp::V2::ValueFrequency>]
    #     Sample of value frequencies in this bucket. The total number of
    #     values returned per bucket is capped at 20.
    class CategoricalStatsHistogramBucket; end
  end

  # Result of the k-anonymity computation.
  # @!attribute [rw] equivalence_class_histogram_buckets
  #   @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::KAnonymityResult::KAnonymityHistogramBucket>]
  #     Histogram of k-anonymity equivalence classes.
  class KAnonymityResult
    # The set of columns' values that share the same ldiversity value
    # @!attribute [rw] quasi_ids_values
    #   @return [Array<Google::Privacy::Dlp::V2::Value>]
    #     Set of values defining the equivalence class. One value per
    #     quasi-identifier column in the original KAnonymity metric message.
    #     The order is always the same as the original request.
    # @!attribute [rw] equivalence_class_size
    #   @return [Integer]
    #     Size of the equivalence class, for example number of rows with the
    #     above set of values.
    class KAnonymityEquivalenceClass; end

    # @!attribute [rw] equivalence_class_size_lower_bound
    #   @return [Integer]
    #     Lower bound on the size of the equivalence classes in this bucket.
    # @!attribute [rw] equivalence_class_size_upper_bound
    #   @return [Integer]
    #     Upper bound on the size of the equivalence classes in this bucket.
    # @!attribute [rw] bucket_size
    #   @return [Integer]
    #     Total number of equivalence classes in this bucket.
    # @!attribute [rw] bucket_values
    #   @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::KAnonymityResult::KAnonymityEquivalenceClass>]
    #     Sample of equivalence classes in this bucket. The total number of
    #     classes returned per bucket is capped at 20.
    class KAnonymityHistogramBucket; end
  end

  # Result of the l-diversity computation.
  # @!attribute [rw] sensitive_value_frequency_histogram_buckets
  #   @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::LDiversityResult::LDiversityHistogramBucket>]
  #     Histogram of l-diversity equivalence class sensitive value frequencies.
  class LDiversityResult
    # The set of columns' values that share the same ldiversity value.
    # @!attribute [rw] quasi_ids_values
    #   @return [Array<Google::Privacy::Dlp::V2::Value>]
    #     Quasi-identifier values defining the k-anonymity equivalence
    #     class. The order is always the same as the original request.
    # @!attribute [rw] equivalence_class_size
    #   @return [Integer]
    #     Size of the k-anonymity equivalence class.
    # @!attribute [rw] num_distinct_sensitive_values
    #   @return [Integer]
    #     Number of distinct sensitive values in this equivalence class.
    # @!attribute [rw] top_sensitive_values
    #   @return [Array<Google::Privacy::Dlp::V2::ValueFrequency>]
    #     Estimated frequencies of top sensitive values.
    class LDiversityEquivalenceClass; end

    # @!attribute [rw] sensitive_value_frequency_lower_bound
    #   @return [Integer]
    #     Lower bound on the sensitive value frequencies of the equivalence
    #     classes in this bucket.
    # @!attribute [rw] sensitive_value_frequency_upper_bound
    #   @return [Integer]
    #     Upper bound on the sensitive value frequencies of the equivalence
    #     classes in this bucket.
    # @!attribute [rw] bucket_size
    #   @return [Integer]
    #     Total number of equivalence classes in this bucket.
    # @!attribute [rw] bucket_values
    #   @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::LDiversityResult::LDiversityEquivalenceClass>]
    #     Sample of equivalence classes in this bucket. The total number of
    #     classes returned per bucket is capped at 20.
    class LDiversityHistogramBucket; end
  end

  # Result of the reidentifiability analysis. Note that these results are an
  # estimation, not exact values.
  # @!attribute [rw] k_map_estimation_histogram
  #   @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::KMapEstimationResult::KMapEstimationHistogramBucket>]
  #     The intervals [min_anonymity, max_anonymity] do not overlap. If a value
  #     doesn't correspond to any such interval, the associated frequency is
  #     zero. For example, the following records:
  #       {min_anonymity: 1, max_anonymity: 1, frequency: 17}
  #       {min_anonymity: 2, max_anonymity: 3, frequency: 42}
  #       {min_anonymity: 5, max_anonymity: 10, frequency: 99}
  #     mean that there are no record with an estimated anonymity of 4, 5, or
  #     larger than 10.
  class KMapEstimationResult
    # A tuple of values for the quasi-identifier columns.
    # @!attribute [rw] quasi_ids_values
    #   @return [Array<Google::Privacy::Dlp::V2::Value>]
    #     The quasi-identifier values.
    # @!attribute [rw] estimated_anonymity
    #   @return [Integer]
    #     The estimated anonymity for these quasi-identifier values.
    class KMapEstimationQuasiIdValues; end

    # A KMapEstimationHistogramBucket message with the following values:
    #   min_anonymity: 3
    #   max_anonymity: 5
    #   frequency: 42
    # means that there are 42 records whose quasi-identifier values correspond
    # to 3, 4 or 5 people in the overlying population. An important particular
    # case is when min_anonymity = max_anonymity = 1: the frequency field then
    # corresponds to the number of uniquely identifiable records.
    # @!attribute [rw] min_anonymity
    #   @return [Integer]
    #     Always positive.
    # @!attribute [rw] max_anonymity
    #   @return [Integer]
    #     Always greater than or equal to min_anonymity.
    # @!attribute [rw] bucket_size
    #   @return [Integer]
    #     Number of records within these anonymity bounds.
    # @!attribute [rw] bucket_values
    #   @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::KMapEstimationResult::KMapEstimationQuasiIdValues>]
    #     Sample of quasi-identifier tuple values in this bucket. The total
    #     number of classes returned per bucket is capped at 20.
    class KMapEstimationHistogramBucket; end
  end
end

#requested_source_tableGoogle::Privacy::Dlp::V2::BigQueryTable

Returns Input dataset to compute metrics over.

Returns:



706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
# File 'lib/google/cloud/dlp/v2/doc/google/privacy/dlp/v2/dlp.rb', line 706

class AnalyzeDataSourceRiskDetails
  # Result of the numerical stats computation.
  # @!attribute [rw] min_value
  #   @return [Google::Privacy::Dlp::V2::Value]
  #     Minimum value appearing in the column.
  # @!attribute [rw] max_value
  #   @return [Google::Privacy::Dlp::V2::Value]
  #     Maximum value appearing in the column.
  # @!attribute [rw] quantile_values
  #   @return [Array<Google::Privacy::Dlp::V2::Value>]
  #     List of 99 values that partition the set of field values into 100 equal
  #     sized buckets.
  class NumericalStatsResult; end

  # Result of the categorical stats computation.
  # @!attribute [rw] value_frequency_histogram_buckets
  #   @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::CategoricalStatsResult::CategoricalStatsHistogramBucket>]
  #     Histogram of value frequencies in the column.
  class CategoricalStatsResult
    # @!attribute [rw] value_frequency_lower_bound
    #   @return [Integer]
    #     Lower bound on the value frequency of the values in this bucket.
    # @!attribute [rw] value_frequency_upper_bound
    #   @return [Integer]
    #     Upper bound on the value frequency of the values in this bucket.
    # @!attribute [rw] bucket_size
    #   @return [Integer]
    #     Total number of values in this bucket.
    # @!attribute [rw] bucket_values
    #   @return [Array<Google::Privacy::Dlp::V2::ValueFrequency>]
    #     Sample of value frequencies in this bucket. The total number of
    #     values returned per bucket is capped at 20.
    class CategoricalStatsHistogramBucket; end
  end

  # Result of the k-anonymity computation.
  # @!attribute [rw] equivalence_class_histogram_buckets
  #   @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::KAnonymityResult::KAnonymityHistogramBucket>]
  #     Histogram of k-anonymity equivalence classes.
  class KAnonymityResult
    # The set of columns' values that share the same ldiversity value
    # @!attribute [rw] quasi_ids_values
    #   @return [Array<Google::Privacy::Dlp::V2::Value>]
    #     Set of values defining the equivalence class. One value per
    #     quasi-identifier column in the original KAnonymity metric message.
    #     The order is always the same as the original request.
    # @!attribute [rw] equivalence_class_size
    #   @return [Integer]
    #     Size of the equivalence class, for example number of rows with the
    #     above set of values.
    class KAnonymityEquivalenceClass; end

    # @!attribute [rw] equivalence_class_size_lower_bound
    #   @return [Integer]
    #     Lower bound on the size of the equivalence classes in this bucket.
    # @!attribute [rw] equivalence_class_size_upper_bound
    #   @return [Integer]
    #     Upper bound on the size of the equivalence classes in this bucket.
    # @!attribute [rw] bucket_size
    #   @return [Integer]
    #     Total number of equivalence classes in this bucket.
    # @!attribute [rw] bucket_values
    #   @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::KAnonymityResult::KAnonymityEquivalenceClass>]
    #     Sample of equivalence classes in this bucket. The total number of
    #     classes returned per bucket is capped at 20.
    class KAnonymityHistogramBucket; end
  end

  # Result of the l-diversity computation.
  # @!attribute [rw] sensitive_value_frequency_histogram_buckets
  #   @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::LDiversityResult::LDiversityHistogramBucket>]
  #     Histogram of l-diversity equivalence class sensitive value frequencies.
  class LDiversityResult
    # The set of columns' values that share the same ldiversity value.
    # @!attribute [rw] quasi_ids_values
    #   @return [Array<Google::Privacy::Dlp::V2::Value>]
    #     Quasi-identifier values defining the k-anonymity equivalence
    #     class. The order is always the same as the original request.
    # @!attribute [rw] equivalence_class_size
    #   @return [Integer]
    #     Size of the k-anonymity equivalence class.
    # @!attribute [rw] num_distinct_sensitive_values
    #   @return [Integer]
    #     Number of distinct sensitive values in this equivalence class.
    # @!attribute [rw] top_sensitive_values
    #   @return [Array<Google::Privacy::Dlp::V2::ValueFrequency>]
    #     Estimated frequencies of top sensitive values.
    class LDiversityEquivalenceClass; end

    # @!attribute [rw] sensitive_value_frequency_lower_bound
    #   @return [Integer]
    #     Lower bound on the sensitive value frequencies of the equivalence
    #     classes in this bucket.
    # @!attribute [rw] sensitive_value_frequency_upper_bound
    #   @return [Integer]
    #     Upper bound on the sensitive value frequencies of the equivalence
    #     classes in this bucket.
    # @!attribute [rw] bucket_size
    #   @return [Integer]
    #     Total number of equivalence classes in this bucket.
    # @!attribute [rw] bucket_values
    #   @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::LDiversityResult::LDiversityEquivalenceClass>]
    #     Sample of equivalence classes in this bucket. The total number of
    #     classes returned per bucket is capped at 20.
    class LDiversityHistogramBucket; end
  end

  # Result of the reidentifiability analysis. Note that these results are an
  # estimation, not exact values.
  # @!attribute [rw] k_map_estimation_histogram
  #   @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::KMapEstimationResult::KMapEstimationHistogramBucket>]
  #     The intervals [min_anonymity, max_anonymity] do not overlap. If a value
  #     doesn't correspond to any such interval, the associated frequency is
  #     zero. For example, the following records:
  #       {min_anonymity: 1, max_anonymity: 1, frequency: 17}
  #       {min_anonymity: 2, max_anonymity: 3, frequency: 42}
  #       {min_anonymity: 5, max_anonymity: 10, frequency: 99}
  #     mean that there are no record with an estimated anonymity of 4, 5, or
  #     larger than 10.
  class KMapEstimationResult
    # A tuple of values for the quasi-identifier columns.
    # @!attribute [rw] quasi_ids_values
    #   @return [Array<Google::Privacy::Dlp::V2::Value>]
    #     The quasi-identifier values.
    # @!attribute [rw] estimated_anonymity
    #   @return [Integer]
    #     The estimated anonymity for these quasi-identifier values.
    class KMapEstimationQuasiIdValues; end

    # A KMapEstimationHistogramBucket message with the following values:
    #   min_anonymity: 3
    #   max_anonymity: 5
    #   frequency: 42
    # means that there are 42 records whose quasi-identifier values correspond
    # to 3, 4 or 5 people in the overlying population. An important particular
    # case is when min_anonymity = max_anonymity = 1: the frequency field then
    # corresponds to the number of uniquely identifiable records.
    # @!attribute [rw] min_anonymity
    #   @return [Integer]
    #     Always positive.
    # @!attribute [rw] max_anonymity
    #   @return [Integer]
    #     Always greater than or equal to min_anonymity.
    # @!attribute [rw] bucket_size
    #   @return [Integer]
    #     Number of records within these anonymity bounds.
    # @!attribute [rw] bucket_values
    #   @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::KMapEstimationResult::KMapEstimationQuasiIdValues>]
    #     Sample of quasi-identifier tuple values in this bucket. The total
    #     number of classes returned per bucket is capped at 20.
    class KMapEstimationHistogramBucket; end
  end
end